57 research outputs found

    Evaluation of Therapeutic Properties of a Low Energy Electron Beam Plus Spoiler for Local Treatment of Mycosis Fungoides: A Monte Carlo Study

    Get PDF
    Background: When using low-energy electron beams for the treatment of skin lesions, such as Mycosis Fungoides (MF), a beam spoiler is used to decrease electron therapeutic depth (R90) while increasing the surface dose. Objective: The aim of this study was to evaluate the characteristics of a 5 MeV electron beam when using a spoiler for the local treatment of MF skin lesions by Monte Carlo (MC) simulation. Methods: A Siemens Primus treatment head and an acrylic spoiler, positioned at the end of applicator, were simulated using BEAMnrc, an EGSnrc user code. The modelled beam was validated by measurement using MP3-M water tank, Roos parallel plate chamber and Semi flex Chamber-31013 (all from PTW, Freiburg, Germany). For different spoiler thicknesses, dose distributions in water were calculated for 2 field sizes and were compared to those for the corresponding open fields. Results: For a 1.3 cm spoiler, therapeutic range changed from 1.5 cm (open field) to 0.5 cm and 0.4 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in penumbra width was 2.8 and 3.8 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in bremsstrahlung contamination was %2 in both field sizes. Conclusion: R90 decreased exponentially with increase in spoiler thickness. The effect of field size on penumbra was much larger for spoiled beam compared to the open beam. The results of this research can be applied to optimize the radiation treatment of MF patients in our hospital

    Design and Implementation of a Monte Carlo Framework for Assessment of Spoiler Applications in Abutting Electron Fields

    Get PDF
    Background: Field matching problems in abutting electron fields can be man-aged by using spoilers. Objective: The aim of this study was to design a Monte Carlo framework for the assessment of spoiler application in abutting electron fields. Material and Methods: In this experimental study, a Siemens Primus treatment head was simulated for a 5 MeV electron beam using BEAMnrc, DOSXYZnrc and EGSnrc user codes. Validation of beam model was done by measurement using a MP3-M water tank and a Semi-flex Chamber-31010 (PTW, Freiburg, Germany). An in-house routine was developed to calculate the combined isodose curves result-ing from simulated adjacent fields. The developed framework was analyzed using PMMA and chromium spoilers. Results: The penumbra width increased from 27.5 mm for open fields to 42 mm for PMMA and 40 mm for chromium. The maximum junction dose reduced from 115% for open fields to 107% for PMMA and 108% for chromium. R90 reduced about 6 mm for PMMA and 3 mm for chromium. Uniformity index reduced from 93% to 77% for both spoilers. Surface dose increased from 79% to 89% for PMMA and 88% for chromium. Conclusion: Using spoilers, penumbra width at the surface was increased, size and depth of hot spots as well as the therapeutic range were reduced and dose homo-geneity at the junction of abutting electron fields was improved. For both spoilers, the uniformity index reduced, and surface percent dose increased. The results of this research can be used to optimize dose distribution in electron beam treatment using abutting fields

    Response of lettuce to Cd-enriched water and irrigation frequencies

    Get PDF
    This pot experiment was an attempt to investigate a broad response of lettuce to different cadmium (Cd) levels of irrigation water (0, 5, 10 and 20 mg l-1) under different irrigation intervals (1, 2 and 4 days). The results showed that increased level of soil Cd through irrigation eventually decreased the yield of lettuce in all cases; however, in some cases yield was increased with lower doses of Cd application. No injury symptoms were observed other than plant height and yield reduction. Shoot dry weight proved to be the most sensitive parameters to the cadmium, especially under water stress conditions. The results also showed that the concentrations of nutrient elements in lettuce shoot were suppressed by water stress. The presence of cadmium in irrigation water did not significantly affect the absorption of nutrient elements by plants except for Fe. Shoot Cd concentration and its uptake decreased with increasing irrigation frequencies and the reverse trend occurred with increasing Cd levels of irrigation water. However, the values were higher than recommended guideline in all conditions. Also, shoot Cd content showed a significant positive correlation with the final accumulated Cd concentration of soil and was expressed by a plateau model under the dry irrigation regime and linear models at other irrigation intervals. Overall, shoot Cd concentration was predicted by using a simple linear regression model regardless of evapotranspiration and transpiration rate of plant.Key words: Cadmium toxicity; chemical composition; irrigation frequency; lettuce

    Evaluation of Therapeutic Properties of a Low Energy Electron Beam Plus Spoiler for Local Treatment of Mycosis Fungoides: A Monte Carlo Study

    Get PDF
    Background: When using low-energy electron beams for the treatment of skin lesions, such as Mycosis Fungoides (MF), a beam spoiler is used to decrease electron therapeutic depth (R90) while increasing the surface dose. Objective: The aim of this study was to evaluate the characteristics of a 5 MeV electron beam when using a spoiler for the local treatment of MF skin lesions by Monte Carlo (MC) simulation. Material and Methods: In this experimental study, a Siemens Primus treatment head and an acrylic spoiler, positioned at the end of applicator, were simu-lated using BEAMnrc, an EGSnrc user code. The modelled beam was validated by measurement using MP3-M water tank, Roos parallel plate chamber and Semi flex Chamber-31013 (all from PTW, Freiburg, Germany). For different spoiler thickness-es, dose distributions in water were calculated for 2 field sizes and were compared to those for the corresponding open fields. Results: For a 1.3 cm spoiler, therapeutic range changed from 1.5 cm (open field) to 0.5 cm and 0.4 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in penumbra width was 2.8 and 3.8 cm for 10 × 10 cm2 and 20 × 20 cm2 field sizes, respectively. Maximum increase in bremsstrahlung contamination was %2 in both field sizes. Conclusion: R90 decreased exponentially with increase in spoiler thickness. The effect of field size on penumbra was much larger for spoiled beam compared to the open beam. The results of this research can be applied to optimize the radiation treatment of MF patients in our hospital

    Bio-corrosion behavior and mechanical characteristics of magnesium-titania-hydroxyapatite nanocomposites coated by magnesium-oxide flakes and silicon for use as resorbable bone fixation material

    Get PDF
    This study was aimed to improve of the corrosion resistance and mechanical properties of Mg/15TiO2/5HA nanocomposite by silicon and magnesium oxide coatings prepared using a powder metallurgy method. The phase evolution, chemical composition, microstructure and mechanical properties of uncoated and coated samples were characterized. Electrochemical and immersion tests used to investigate the in vitro corrosion behavior of the fabricated samples. The adhesion strength of ~36 MPa for MgO and ~32 MPa for Si/MgO coatings to substrate was measured by adhesion test. Fabrication a homogenous double layer coating with uniform thicknesses consisting micro-sized particles of Si as outer layer and flake-like particles of MgO as the inner layer on the surface of Mg/15TiO2/5HA nanocomposite caused the corrosion resistance and ductility increased whereas the ultimate compressive stress decreased. However, after immersion in SBF solution, Si/MgO-coated sample indicates the best mechanical properties compared to those of the uncoated and MgO-coated samples. The increase of cell viability percentage of the normal human osteoblast (NHOst) cells indicates the improvement in biocompatibility of Mg/15TiO2/5HA nanocomposite by Si/MgO coating

    Problems of quality control of automatic dispensing systems for radiopharmaceuticals

    No full text

    3D printed soft parallel actuator

    No full text
    © 2018 IOP Publishing Ltd. This paper presents a 3-dimensional (3D) printed soft parallel contactless actuator for the first time. The actuator involves an electro-responsive parallel mechanism made of two segments namely active chain and passive chain both 3D printed. The active chain is attached to the ground from one end and constitutes two actuator links made of responsive hydrogel. The passive chain, on the other hand, is attached to the active chain from one end and consists of two rigid links made of polymer. The actuator links are printed using an extrusion-based 3D-Bioplotter with polyelectrolyte hydrogel as printer ink. The rigid links are also printed by a 3D fused deposition modelling (FDM) printer with acrylonitrile butadiene styrene (ABS) as print material. The kinematics model of the soft parallel actuator is derived via transformation matrices notations to simulate and determine the workspace of the actuator. The printed soft parallel actuator is then immersed into NaOH solution with specific voltage applied to it via two contactless electrodes. The experimental data is then collected and used to develop a parametric model to estimate the end-effector position and regulate kinematics model in response to specific input voltage over time. It is observed that the electroactive actuator demonstrates expected behaviour according to the simulation of its kinematics model. The use of 3D printing for the fabrication of parallel soft actuators opens a new chapter in manufacturing sophisticated soft actuators with high dexterity and mechanical robustness for biomedical applications such as cell manipulation and drug release

    Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid heteropolyacid: optimization using response surface methodology (RSM)

    No full text
    This study aims to develop an optimal continuous process to produce fatty acid methyl esters (biodiesel) from waste cooking oil in a reactive distillation column catalyzed by a heteropolyacid, H3PW12O40·6H2O. The conventional production of biodiesel in the batch reactor has some disadvantage such as excessive alcohol demand, short catalyst life and high production cost. Reactive distillation combines reaction and separation to simplify the process operation. The reaction catalyzed by H3PW12O40·6H2O overcomes the neutralization problem that occurs in conventional transesterification of waste cooking oil with high free fatty acid (FFAs) and water content. Response surface methodology (RSM) based on central composite design (CCD) was used to design the experiment and analyzed four operating parameters: total feed flow, feed temperature, reboiler duty and methanol/oil ratio. The optimum conditions were determined to be 116.23 (mol/h) total feed flow, 29.9 °C feed temperature, 1.3 kW reboiler duty, and 67.9 methanol/oil ratio. The optimum and actual free fatty acid methyl ester (FAME) yield was 93.98% and 93.94%, respectively, which demonstrates that RSM is an accurate method for the current procedure
    corecore