49 research outputs found

    Mindin/F-spondin Family: Novel ECM Proteins Expressed in the Zebrafish Embryonic Axis

    Get PDF
    AbstractF-spondin is a secreted protein expressed at high levels by the floor plate cells. The C-terminal half of the protein contains six thrombospondin type 1 repeats, while the N-terminal half exhibited virtually no similarity to any other protein until recently, when aDrosophilagene termedM-spondinwas cloned; its product was found to share two conserved domains with the N-terminal half of F-spondin. We report the molecular cloning of four zebrafish genes encoding secreted proteins with these conserved domains. Two are zebrafish homologs ofF-spondin,while the other two, termedmindin1andmindin2,encode mutually related novel proteins, which are more related to theDrosophilaM-spondin than to F-spondin. During embryonic development, all four genes are expressed in the floor plate cells. In addition to the floor plate,mindin1is expressed in the hypochord cells, whilemindin2is expressed in the sclerotome cells. When ectopically expressed, Mindin proteins selectively accumulate in the basal lamina, suggesting that Mindins are extracellular matrix (ECM) proteins with high affinity to the basal lamina. We also report the spatial distribution of one of the F-spondin proteins, F-spondin2. F-spondin2 is localized to the thread-like structure in the central canal of the spinal cord, which is likely to correspond to Reissner's fiber known to be present in the vertebrate phylum. In summary, our study has defined a novel gene family of ECM molecules in the vertebrate, all of which may potentially be involved in development of the midline structure

    Synchronous multi-segmental activity between metachronal waves controls locomotion speed in Drosophila larvae

    Get PDF
    Japan Society for the Promotion of Science KAKENHI, Royal Society of Edinburgh grant 64553 Maarten F ZwartThe ability to adjust the speed of locomotion is essential for survival. In limbed animals, the frequency of locomotion is modulated primarily by changing the duration of the stance phase. The underlying neural mechanisms of this selective modulation remain an open question. Here, we report a neural circuit controlling a similarly selective adjustment of locomotion frequency in Drosophila larvae. Drosophila larvae crawl using peristaltic waves of muscle contractions. We find that larvae adjust the frequency of locomotion mostly by varying the time between consecutive contraction waves, reminiscent of limbed locomotion. A specific set of muscles, the lateral transverse (LT) muscles, co-contract in all segments during this phase, the duration of which sets the duration of the interwave phase. We identify two types of GABAergic interneurons in the LT neural network, premotor neuron A26f and its presynaptic partner A31c, which exhibit segmentally synchronized activity and control locomotor frequency by setting the amplitude and duration of LT muscle contractions. Altogether, our results reveal an inhibitory central circuit that sets the frequency of locomotion by controlling the duration of the period in between peristaltic waves. Further analysis of the descending inputs onto this circuit will help understand the higher control of this selective modulation.Publisher PDFPeer reviewe

    Identification of inhibitory premotor interneurons activated at a late phase in a motor cycle during Drosophila larval locomotion

    Get PDF
    This work was supported by a MEXT/JSPS KAKENHI Grant Numbers, 22115002 (to A.N.) and 221S0003 (to A.N. and Y.I.), and 15H04255 (to A.N.). The work was also supported by Janelia Research Campus (Howard Hughes Medical Institute).Rhythmic motor patterns underlying many types of locomotion are thought to be produced by central pattern generators (CPGs). Our knowledge of how CPG networks generate motor patterns in complex nervous systems remains incomplete, despite decades of work in a variety of model organisms. Substrate borne locomotion in Drosophila larvae is driven by waves of muscular contraction that propagate through multiple body segments. We use the motor circuitry underlying crawling in larval Drosophila as a model to try to understand how segmentally coordinated rhythmic motor patterns are generated. Whereas muscles, motoneurons and sensory neurons have been well investigated in this system, far less is known about the identities and function of interneurons. Our recent study identified a class of glutamatergic premotor interneurons, PMSIs (period-positive median segmental interneurons), that regulate the speed of locomotion. Here, we report on the identification of a distinct class of glutamatergic premotor interneurons called Glutamatergic Ventro-Lateral Interneurons (GVLIs). We used calcium imaging to search for interneurons that show rhythmic activity and identified GVLIs as interneurons showing wave-like activity during peristalsis. Paired GVLIs were present in each abdominal segment A1-A7 and locally extended an axon towards a dorsal neuropile region, where they formed GRASP-positive putative synaptic contacts with motoneurons. The interneurons expressed vesicular glutamate transporter (vGluT) and thus likely secrete glutamate, a neurotransmitter known to inhibit motoneurons. These anatomical results suggest that GVLIs are premotor interneurons that locally inhibit motoneurons in the same segment. Consistent with this, optogenetic activation of GVLIs with the red-shifted channelrhodopsin, CsChrimson ceased ongoing peristalsis in crawling larvae. Simultaneous calcium imaging of the activity of GVLIs and motoneurons showed that GVLIs' wave-like activity lagged behind that of motoneurons by several segments. Thus, GVLIs are activated when the front of a forward motor wave reaches the second or third anterior segment. We propose that GVLIs are part of the feedback inhibition system that terminates motor activity once the front of the motor wave proceeds to anterior segments.Publisher PDFPeer reviewe

    A circuit mechanism for the propagation of waves of muscle contraction in Drosophila

    Get PDF
    Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.Publisher PDFPeer reviewe

    A circuit mechanism for the propagation of waves of muscle contraction in Drosophila.

    Get PDF
    Animals move by adaptively coordinating the sequential activation of muscles. The circuit mechanisms underlying coordinated locomotion are poorly understood. Here, we report on a novel circuit for the propagation of waves of muscle contraction, using the peristaltic locomotion of Drosophila larvae as a model system. We found an intersegmental chain of synaptically connected neurons, alternating excitatory and inhibitory, necessary for wave propagation and active in phase with the wave. The excitatory neurons (A27h) are premotor and necessary only for forward locomotion, and are modulated by stretch receptors and descending inputs. The inhibitory neurons (GDL) are necessary for both forward and backward locomotion, suggestive of different yet coupled central pattern generators, and its inhibition is necessary for wave propagation. The circuit structure and functional imaging indicated that the commands to contract one segment promote the relaxation of the next segment, revealing a mechanism for wave propagation in peristaltic locomotion.We thank the Fly EM Project Team at HHMI Janelia for the gift of the EM volume, the HHMI visa office, and HHMI Janelia for funding.This is the final version of the article. It first appeared from eLife via http://dx.doi.org/10.7554/eLife.1325

    Optical Dissection of Neural Circuits Responsible for Drosophila Larval Locomotion with Halorhodopsin

    Get PDF
    Halorhodopsin (NpHR), a light-driven microbial chloride pump, enables silencing of neuronal function with superb temporal and spatial resolution. Here, we generated a transgenic line of Drosophila that drives expression of NpHR under control of the Gal4/UAS system. Then, we used it to dissect the functional properties of neural circuits that regulate larval peristalsis, a continuous wave of muscular contraction from posterior to anterior segments. We first demonstrate the effectiveness of NpHR by showing that global and continuous NpHR-mediated optical inhibition of motor neurons or sensory feedback neurons induce the same behavioral responses in crawling larvae to those elicited when the function of these neurons are inhibited by Shibirets, namely complete paralyses or slowed locomotion, respectively. We then applied transient and/or focused light stimuli to inhibit the activity of motor neurons in a more temporally and spatially restricted manner and studied the effects of the optical inhibition on peristalsis. When a brief light stimulus (1–10 sec) was applied to a crawling larva, the wave of muscular contraction stopped transiently but resumed from the halted position when the light was turned off. Similarly, when a focused light stimulus was applied to inhibit motor neurons in one or a few segments which were about to be activated in a dissected larva undergoing fictive locomotion, the propagation of muscular constriction paused during the light stimulus but resumed from the halted position when the inhibition (>5 sec) was removed. These results suggest that (1) Firing of motor neurons at the forefront of the wave is required for the wave to proceed to more anterior segments, and (2) The information about the phase of the wave, namely which segment is active at a given time, can be memorized in the neural circuits for several seconds
    corecore