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Regulation of forward and backward locomotion
through intersegmental feedback circuits in
Drosophila larvae

Hiroshi Kohsaka® ', Maarten F. Zwart® 23, Akira Fushiki®4, Richard D. Fetter® 2, James W. Truman?>,
Albert Cardona® %© & Akinao Nose!’

Animal locomotion requires spatiotemporally coordinated contraction of muscles throughout
the body. Here, we investigate how contractions of antagonistic groups of muscles are
intersegmentally coordinated during bidirectional crawling of Drosophila larvae. We identify
two pairs of higher-order premotor excitatory interneurons present in each abdominal neu-
romere that intersegmentally provide feedback to the adjacent neuromere during motor
propagation. The two feedback neuron pairs are differentially active during either forward or
backward locomotion but commonly target a group of premotor interneurons that together
provide excitatory inputs to transverse muscles and inhibitory inputs to the antagonistic
longitudinal muscles. Inhibition of either feedback neuron pair compromises contraction of
transverse muscles in a direction-specific manner. Our results suggest that the interseg-
mental feedback neurons coordinate contraction of synergistic muscles by acting as delay
circuits representing the phase lag between segments. The identified circuit architecture also
shows how bidirectional motor networks could be economically embedded in the nervous
system.
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xial locomotion, where muscle contractions propagate

along a chain of body segments, is a prevalent mode of

motor outputs in bilateral animals. This motor pattern
includes crawling, swimming, and walking in vertebrates and
invertebrates! 4. Axial propagation of motor activity is also
observed in back muscles during human walking®. In general,
axial locomotion possesses the following organizational proper-
ties. (1) Intersegmental coordination: for the entire body to
produce coherent behavioral outputs, motor activities have to
propagate along a chain of segments in a phase-coupled
manner!26. (2) Muscle synergy: to enable efficient recruitment
of a large number of muscles in the body during axial or other
types of movements, groups of muscles with similar functions are
thought to be activated in a modular manner’~%. (3) Bidir-
ectionality: while some animals move only in the forward direc-
tion, many animals including nematodes, lampreys, and tadpoles,
also move in the backward direction by reversing the propagation
of motor activity!0-14,

In spite of intensive studies on each of these regulations in
crustacean, leech, lamprey, fish, tadpole, and salamander among
others!~%, how these regulations are integrated to generate
dynamic and orchestrated motor outputs during axial locomotion
remains incompletely understood. Neuronal sub-circuits imple-
menting each of these regulations likely converge in a larger
circuit to generate a coherent sequence of axial movements.
However, little is known about the mechanism of how the
intersegmental propagation of motor activity is coupled to
coordinated activation and inhibition of synergistic muscles in
adjacent segments. Little is also known about the mechanism of
how bidirectional sub-circuits generate flows of neural activity
that recruit similar groups of muscles in opposite directions.
Dedicated subnetworks including both interneurons and motor
neurons (MNs) are known to actuate forward and backward
locomotion in the unsegmented Caenorhabditis elegans'3. How-
ever, such a circuit configuration would increase the number of
component neurons and the complexity of the circuits.

Drosophila larvae provide an excellent model system for
genetically dissecting the neural networks controlling axial
locomotion!>16, The larvae normally locomote by forward
crawling, in which segmental muscle contraction and the corre-
sponding motor activity in the central nervous system (CNS) is
propagated from the posterior to anterior body segments!21718,
The larvae also exhibit backward crawling, in which largely the
same sets of muscles in each segment are activated, but in the
opposite direction from the anterior to posterior. Two major
groups of antagonistic muscles are present in each body segment:
longitudinal muscles whose activation leads to longitudinal con-
traction of the segment, and transverse muscles whose activation
induces circumferential contraction!>!®. During both forward
and backward locomotion, these two groups of muscles are
sequentially contracted in each segment, with the longitudinal
muscles being activated first!2. The relative timing (phase) of the
activation of the two groups of muscles is synchronized both
intrasegmentally and intersegmentally at varying cycle periods0.
Furthermore, the phase-constancy is maintained during fictive
locomotion in an isolated CNS'8. These results suggest the pre-
sence of central pattern generators that intersegmentally and
bidirectionally regulate the coherent activation of the two groups
of muscles.

In this study we combined electron microscopy (EM) circuit
mapping and functional analyses to identify the neural network
that underlies this coordination. The core elements of the net-
work are two bilateral pairs of 2nd order premotor interneurons
in each abdominal segment. Each of the paired neurons is spe-
cifically activated in forward or backward locomotion, respec-
tively, and through intersegmental feedback provides delayed

excitation to the adjacent posterior or anterior neuromere. By
linking sub-circuits regulating intersegmental activity propaga-
tion and synergistic muscle control in a direction-specific man-
ner, these neurons realize intersegmentally coordinated activation
of synergistic muscles. They share a group of premotor inter-
neurons as their postsynaptic partners, which in turn connect
with groups of antagonistic muscles in a cooperative manner,
demonstrating how neural networks coordinating a bidirectional
flow of neural activity could coexist in the CNS.

Results

Bidirectional feedback connections in the premotor circuits. In
each abdominal hemi-segment of Drosophila larvae, two major
groups of antagonistic muscles, longitudinal muscles, and trans-
verse muscles, are innervated by distinct sets of motor neurons
(Fig. 1a). Previous studies identified several groups of segmental
premotor interneurons that are active during forward/backward
locomotion!>20-28  including the PMSIs (period-positive median
segmental interneurons)?2. Since PMSIs in each neuromere are
sequentially activated in a phasic manner both during forward
and backward waves (see below), we reasoned that key regulatory
neurons of intersegmental coordination should be present in the
common upstream circuits of these neurons. We therefore used
reconstructions from a serial section transmission electron
microscopy (ssTEM) image data set of an entire first instar larval
CNS2%30 to investigate the upstream circuits of PMSIs. We first
identified in the ssSTEM images, two PMSIs, A02e and A02g
(Fig. 1b-d), which form synapses to MNs locally in the same
segment (Supplementary Fig. 1A-F. For details on the char-
acterization of PMSIs see Supplementary Methods and Supple-
mentary Fig. 1). We then reconstructed the presynaptic neurons
of A02e and A02g, and identified Ifb-Fwd and Ifb-Bwd as the
only common upstream neurons (Fig. le-h and Supplementary
Fig. 2), except for the DnB (Down and back) neuron, which had
been previously shown to be involved in the regulation of noci-
ceptive escape behaviors3l. Interestingly, as detailed below, we
found that Ifb-Fwd and Ifb-Bwd form symmetric intersegmental
feedback circuits (Fig. 2). Furthermore, Ifb-Fwd and Ifb-Bwd
were only active during forward and backward motor propaga-
tion, respectively (Fig. 3). These observations suggested that these
2nd order premotor interneurons play reciprocal roles in the
regulation of bidirectional locomotion.

Ifb-Fwd receives inputs in the dendrites located in the same
neuromere as the cell body and projects its axon to the next
posterior neuromere to innervate A02e and A02g of that
subsequent neuromere, as revealed by the circuit mapping from
EM (Fig. 2a-c) and single cell analyses (Fig. 2d, e). Ifb-Fwd
expresses a cholinergic marker choline acetyltransferase (ChAT)
(Fig. 2f), suggesting that Ifb-Fwd forms excitatory synapses on
A02e32, Dual-color calcium imaging of Ifb-Fwd and A02e showed
that Ifb-Fwd is activated during forward but not backward fictive
locomotion (Fig. 3a—c. Correlation coefficients between Ifb-Fwd
and A02e are 0.82 + 0.07 (64 waves) in forward waves and —0.02
+0.06 (8 waves) in backward waves (p = 2.6 x 10~42, the two-
sided Student’s t-test, n = 8 larvae)). We named this neuron Ifb-
Fwd (intersegmental feedback during Forward propagation)
because the neuron is specifically active during the forward
activity propagation (Fig. 3a-c) and sends signals back to the
posterior neuromere in the opposite direction to wave propaga-
tion (Fig. 2a—f). The circuit configuration and temporal profile of
its activity is consistent with Ifb-Fwd having roles in interseg-
mental coordination of motor activity.

Similar analyses showed that Ifb-Bwd was the counterpart of
Ifb-Fwd but during backward locomotion, as follows. Ifb-Bwd
received inputs in dendrites present in the same segment as the
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Fig. 1 Identification of 2nd order premotor interneurons. Circuit mapping of PMSIs, AO2e and AO2g and their presynaptic partners from EM. a (Left)

Schematic of larval muscles and the nervous system. Crawling behavior is generated by the propagation of muscular contraction along the length of the
body, which is operated by the propagation neural activity within the central nervous system (VNC: ventral nerve cord). (Right) The body wall muscles are
classified as longitudinal and transverse muscles by their orientations. They are innervated by distinct motor neurons, Longitudinal motor neurons (MNs),
and Transverse MNs. b An image of the entire CNS reconstructed by electron microscopy. The black box indicates the region shown in (). ¢, d Dorsal (¢)
and posterior (d) views of AO2e and AO2g (blue) in segment Al. Gray shading represents the outline of the nervous system. e, f Dorsal (e) and posterior
(f) views of A02e and A02g (blue) and their presynaptic interneurons, Ifb-Fwd (A01d3 in a lineage-based nomenclature, green), Ifb-Bwd (A27k in a

lineage-based nomenclature, magenta), and others (gray). g Posterior views showing the connection between PMSIs (AO2e and g) and the presynaptic

partner Ifb-Fwd and Ifb-Bwd. (h) A connectivity diagram

cell body and projected its axon to the adjacent anterior segment
to innervate PMSIs (Fig. 2g-k). Like Ifb-Fwd, Ifb-Bwd expressed
ChAT and thus is likely excitatory (Fig. 21). Ifb-Bwd was activated
during backward but not forward locomotion (Fig. 3e-g.
Correlation coefficients between Ifb-Bwd and A02e are 0.23 +
0.18 (10 waves) in forward waves and 0.75 + 0.18 (19 waves) in
backward waves (p=7.3 x 1078, the two-sided Student’s t-test,
n =73 larvae)). We therefore named it Ifb-Bwd (Intersegmental
feedback neuron in Backward propagation). The morphology and
activity of Ifb-Fwd and Ifb-Bwd neurons are summarized in
Fig. 3d, h.

Ifb-Fwd and Ifb-Bwd neurons share postsynaptic neurons. The
circuit configuration of Ifb-Fwd and Ifb-Bwd neurons, where a
segment receives feedback signals from the next segment that is
activated later in propagation, suggests that these neurons provide
delayed excitatory inputs to the adjacent neuromere during wave
propagation. We therefore wondered whether these neurons also
target other premotor neurons, beyond the PMSIs, to regulate
their timely activation during axial locomotion. To test this
possibility, we extended the circuit mapping from EM to the
downstream circuits of Ifb-Fwd and Ifb-Bwd (Fig. 4a-d). The

analyses revealed that these two neurons intersegmentally share a
number of postsynaptic target interneurons (Fig. 4e and Sup-
plementary Fig. 3A), including premotor interneurons (Fig. 5d),
further supporting the notion that they play reciprocal roles in
bidirectional locomotion. Also, Ifb-Fwd and Ifb-Bwd were major
sources of inputs to these common target neurons (Supplemen-
tary Fig. 3B). We found five common target interneurons in
addition to the two glutamatergic and putatively inhibitory PMSIs
A02e and A02g described above (and an MN LT1). Two of the
five common neurons, A0O1c and A03g, appeared to be cholinergic
and thus excitatory, and one, A14b, was putatively GABAergic
and thus inhibitory (Fig. 4e, f). Interestingly, the axons of Ifb-Fwd
and Ifb-Bwd overlapped in a restricted region in each neuromere,
and the dendritic arbors of the seven common target neurons
extended toward this restricted region in various directions
(Supplementary Fig. 4; see below), which may represent a func-
tional domain for information processing (see Discussion
section).

The downstream circuits synergistically innervate MNs. Since
Ifb-Fwd and Ifb-Bwd neurons likely convey delayed excitation
to the neighboring neuromere, they may innervate premotor
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Fig. 2 Intersegmental projection of Ifb-Fwd and Ifb-Bwd interneurons. a-f Analyses of Ifb-Fwd interneuron. a-¢ Neuron reconstruction from EM. a Dorsal
view of the Ifb-Fwd neuron (green) and its target AO2e (blue). b Location of the synaptic inputs (cyan) and outputs (red) in Ifb-Fwd. ¢ A synaptic contact
between Ifb-Fwd and AO2e (arrow). d The morphology of Ifb-Fwd as revealed by clonal analysis in SS02065>MCFO (multi-color flip-out). A dorsal view.
e SS02065-Gal4 specifically targets Ifb-Fwd. A dorsal view of an SS02065-Gal4 > mCD8::GFP CNS stained for GFP. f Ifb-Fwd is ChAT-positive. Dorsal view
of an $502065 > mCD8::GFP CNS (n =15 larvae). g-l Analyses of Ifb-Bwd interneuron. g-i Neuron reconstruction from EM. g Dorsal view of the Ifb-Bwd
neuron (magenta) and its target AO2e (blue). h Location of synaptic inputs (cyan) and outputs (red) in Ifb-Bwd. i Synaptic contacts between Ifb-Bwd and
A02e (arrow). j The morphology of Ifb-Bwd as revealed by clonal analysis in SS026694>MCFQ. A dorsal view. k SS026694-Gal4 specifically targets Ifb-
Bwd. A dorsal view of an $5026694>mCD8::GFP CNS stained for GFP. I Ifb-Bwd is ChAT-positive. Dorsal view of an SS026694>mCD8::GFP CNS (n=5
larvae). Black horizontal lines in (a, b, g, h) and white horizontal lines in (d, j) indicate the midlines. Scale bar, 20 um (d, e, j, k) and 5um (f, D

circuits that activate later-contracting transverse muscles and/
or that inhibit earlier-contracting longitudinal muscles. Prob-
ing further downstream to MNs in the premotor circuits, we
found that both appear to be the case (Fig. 5a-d and Supple-
mentary Fig. 5). The two putative excitatory downstream
neurons, AOlc and A03g, directly form synapses to MNs that
target transverse muscles (hereafter called transverse MNs)
(Fig. 5d and Supplementary Fig. 5). AOlc also provided puta-
tive excitatory inputs via the AOlci neuron (“A0lc with ipsi-
lateral dendrites”), which appears to be cholinergic
(Supplementary Fig. 6), to transverse MNs. Conversely, inhi-
bitory A02e and A02g neurons directly innervated MNs that
target longitudinal muscles (called longitudinal MNs). Fur-
thermore, the excitatory A03g neuron, in addition to directly
forming putative excitatory synapses with transverse MNs,
provided putative inhibitory inputs via two GABAergic inter-
neurons (A23a and A31k, Supplementary Fig. 6) to long-
itudinal MNs!219. Thus, the circuit diagram is consistent with
the idea that Ifb-Fwd and Ifb-Bwd neurons control muscle
movement in a synergistic manner, activating the shared
downstream circuits that excite the transverse muscles and
inhibiting the antagonistic longitudinal muscles. Previous
studies identified A27h and EL as candidate premotor inter-
neurons that excite the longitudinal muscles?3-27.

The shared neurons are bidirectionally active. Since Ifb-Fwd
and Ifb-Bwd neurons are active in forward and backward waves,
respectively, the shared target neurons might be activated in both
waves. Convergence of the Ifb neurons on a common set of
premotor interneurons which are active in both waves may
decrease the number of neurons required to realize the bidirec-
tional locomotion. To test this, we studied the activity of five
downstream neurons, AOlci, A03g, A02e, A23a, and A31k, and
found that all of them are indeed activated in both forward and
backward waves (Fig. 6 and Supplementary Fig. 7). We also
studied the time difference between the activity of the down-
stream neurons, Ifb-Fwd and Ifb-Bwd neurons, and aCC motor
neurons using the activity of A02e as the reference time point (in
dual-color calcium imaging—see Methods section for details,
Fig. 6 and Supplementary Fig. 7). The temporal sequence thus
obtained (Fig. 6g) showed that all downstream neurons are
activated at a similar time to, or slightly later than, the Ifb neu-
rons, consistent with their being activated by the Ifb neurons
during forward and backward waves. This observation suggests
that the local circuit of the shared neurons regulates segmental
muscle activity under the directionality-specific operation from
Ifb neurons. In addition, detailed observation indicates that the
phase relationship between the shared neurons depends on the
direction of wave propagation (Fig. 6g), suggesting the existence
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Fig. 3 Ifb-Fwd and Ifb-Bwd mediate intersegmental feedback signaling. a Temporally stacked images of dual-color calcium imaging (pseudocolored such
that Ifb-Fwd>GCaMP is green and A02e>RGECO is blue). b An example of calcium imaging of Ifb-Fwd (green) and AO2e (blue). Ifb-Fwd is active during
forward (f) but not backward (b) fictive locomotion (64 forward waves and 8 backward waves from 8 larvae). AO2e activity was used to monitor wave
propagation. ¢ Correlation coefficients of calcium signals between Ifb-Fwd and AO2e across trials in forward and backward waves. Each horizontal line
corresponds to a single trial. d Summary of the activity and connectivity of Ifb-Fwd. e Temporally stacked images of dual-color calcium imaging
(pseudocolored such that Ifb-Bwd>GCaMP is magenta and A02e>RGECO is blue). f An example of calcium imaging of Ifb-Bwd (magenta) and AO2e (blue).
Ifb-Bwd is active during backward (b) but not forward (f) fictive locomotion (10 forward waves and 19 backward waves from three larvae). g Correlation
coefficients of calcium signals between Ifb-Bwd and AO2e across trials in forward and backward waves. Each horizontal line corresponds to a single trial.
h Summary of the activity and connectivity of Ifb-Bwd. Scale bar, 40 um (a, e)

of additional higher-order (2nd or higher) premotor interneurons
with direction-specific activity properties. We also noted that the
activity of some of the downstream neurons is more closely
related to that of other downstream neurons than to others
(A01ci/A02e and A03g/A23a, Fig. 6g).

Contraction of transverse muscles requires Ifb neurons. Since
likely outputs of Ifb-Fwd and Ifb-Bwd are excitation of transverse
muscles and inhibition of longitudinal muscles (Fig. 5d), Ifb
neurons may regulate contraction and relaxation of these mus-
cles. Indeed, we observed decreased contraction in transverse
muscles when the activity of Ifb neurons was blocked. We
blocked the activity of Ifb neurons by expression of the rectified
potassium channel Kir and studied the effect on the dynamics of
muscle contraction that occurred during motor wave propagation
in open-filleted larvae (muscle contractions imaged by using the
mhc-GFP transgene, Fig. 7). In control larvae, transverse muscles
contracted both during forward and backward waves, which is

consistent with previous studies!2. When the activity of Ifb-Fwd
is blocked, contraction of the transverse muscles was significantly
reduced during forward but not backward waves (Fig. 7a, b and
e). Thus, Ifb-Fwd is required for proper contraction of transverse
muscles during forward motor propagation. Conversely, when the
activity of Ifb-Bwd was blocked, contraction of transverse muscles
was compromised in backward but not forward waves (Fig. 7c-e).
These observations indicate that Ifb-Fwd and Ifb-Bwd neurons
together are critical for delayed activation of the transverse
muscles in bidirectional axial locomotion.

We also temporally inhibited the transmission of Ifb-Fwd
neurons and studied the effects on larval locomotion. The speed
of larval locomotion was significantly decreased (Supplementary
Fig. 8; Ifb-Fwd>shi, 0.51+£0.01s per wave (n=22); driver
control, 0.44 +0.02 s per wave (n = 20); effector control, 0.38 +
0.01 s per wave (n=16), p=10.003 (driver control) and p =8 x
108 (effector control) by the two-sided Student’s ¢-test with the
Bonferroni correction), suggesting that Ifb-Fwd neurons con-
tribute to the regulation of axial wave propagation.
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Fig. 4 Ifb-Fwd and Ifb-Bwd share postsynaptic target neurons. a-d Dorsal views of the reconstructed Ifb-Fwd and Ifb-Bwd and their postsynaptic targets
AOTc and AO3g. Black horizontal lines indicate the midlines. e Downstream neurons shared by Ifb-Fwd and Ifb-Bwd (excitatory neurons, orange; inhibitory
neurons, blue; neurotransmitter unknown, gray). We assigned their neurotransmitter phenotype as follows: AO1c was reported to be cholinergic20. A14b is
putatively GABAergic since it belongs to a lineage of GABAergic neurons29. AO3g is shown to be cholinergic in (f). The neurotransmitter phenotype of the
other two neurons (AO7c4 and AO7f2) could not be tested due to lack of specific Gal4 lines. The widths of arrows indicate synapse numbers. f Dorsal view
of A03g (R36G02>mCD8::GFP) counterstained for ChAT (n =5 larvae). Scale bar, 5um

We next asked whether activation of Ifb neurons or shared
downstream neurons is sufficient to drive contraction of
transverse muscles. We activated these neurons by optogenetics
and found that activation of Ifb-Fwd or Ifb-Bwd did not induce
any muscle movement (Ifb-Fwd: six trials; Ifb-Bwd: five trials).
However, we found that activation of the downstream AO0lci
induces contraction of transverse but not longitudinal muscles
(Supplementary Fig. 9). This is consistent with the idea that
activation of the excitatory neurons in the downstream circuits by
cooperated activation of Ifb neurons and other 2nd order
premotor interneurons induces contraction of transverse muscles.
Taken together, our results suggest that the intersegmental
feedback neurons Ifb-Fwd and Ifb-Bwd mediate delayed activa-
tion of transverse muscles via shared downstream circuits and
additional synaptic steps in the feedback path.

Discussion
Sequential recruitment of distinct groups of segmental muscles is
commonly seen in axial locomotion!-2°. One previously proposed
mechanism for the sequential recruitment is regulation by local
circuits present within each segmental unit. For instance, during
leech swimming, antiphasic contraction of dorsal and long-
itudinal muscles is regulated in part by central oscillator circuits
present in each ganglion?3. In Drosophila larvae, a local inhibi-
tory interneuron (iIN1) regulates delayed contraction of trans-
verse muscles by preventing their precocious activation and thus
by acting as an intrasegmental delay circuit?. In this study, we
revealed a novel mechanism for the sequential muscle recruit-
ment in which intersegmental feedback neurons deliver delayed
excitation on premotor circuits. Thus, in Drosophila larvae, two
delay circuits, one intrasegmental and inhibitory and the other
intersegmental and excitatory, function in a complementary
manner to ensure timely contraction of the transverse muscles.
The intersegmental delay circuits feedback a signal in the
opposite direction to wave propagation, from the wave front to
the adjacent segment behind the front. This circuit configuration

would enable simultaneous activation of transverse muscles in
one segment (via the delay circuit) and longitudinal muscles in
the forward adjacent segment (by the wave front) regardless
of the speed of wave propagation. The circuit configuration
would also maintain the relative timing (phase) of the two
groups of muscles: in many axial motions including larval
crawling, phase of individual muscle movements is maintained
independent of the axial speed, in order to generate functional
motor outputs!-®33-36. As shown in Fig. 8a, each segment
receives excitatory inputs at two distinct time points: at the arrival
of the wave front (time 0) and at a later phase via the interseg-
mental delay circuits (time 1). Since the time delay (between time
0 and time 1) depends on wave propagation along the neigh-
boring segments and thus scales with the cycle period (or speed),
this circuit configuration phase-locks the time delay between the
two groups of muscles (Fig. 8a).

Calcium imaging of Ifb and the downstream neurons revealed
complex yet precise control of the activity of each premotor
interneuron (Fig. 6g) and suggests for the presence of intricate
segmental networks. While previous studies identified several
interneurons that are implicated in the control of motor activity
and/or wave propagation!>20-28, the segmental CPG mechanism
of rhythm generation remains largely unknown. Further investi-
gation of the circuits upstream and downstream of Ifb neurons
will shed light on the nature of the CPG mechanism.

The bidirectional information flow mediated by the interseg-
mental feedback neurons, Ifb-Fwd and Ifb-Bwd, converge in the
immediate downstream circuits on a group of premotor inter-
neurons. This circuit configuration would greatly decrease the
number of neurons required to regulate bidirectional locomotion
and simplifies the neural wiring as compared with dedicated
subnetworks for each direction. Thus, our results suggested an
efficient and economical mechanism for implementing bidirec-
tional propagations in the nervous system.

Is a similar strategy used for the bidirectional feedforward cir-
cuits? Previous work identified a chain of intersegmental neural
connections implicated in feedforward activity propagation during
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forward locomotion?3. The key element of the circuits is the
intersegmental interneuron A27h, which like the Ifb-Fwd neurons
extends its axon into the neighboring segment and is active only
during forward motor propagation. Identifying the counterpart of
A27h during backward locomotion and studying whether the
downstream circuits are also shared will determine whether and
how intersegmental inputs are converged in the bidirectional
feedforward circuits.

The shared targets of the bidirectional feedback neurons
include two premotor interneurons, AOlc and A03g, that directly
and indirectly provide putative excitatory drive to MNs targeting
transverse muscles. When the activity of the delay circuit neurons
was blocked, the transverse muscles LT1-4 failed to contract
(Fig. 7a—e). Furthermore, activation of AOlci, one of the inter-
neurons in the excitatory pathways, is sufficient to contract these
muscles (Supplementary Fig. 8). These observations are con-
sistent with the idea that the feedback neurons act via the com-
mon excitatory pathways to mediate synergistic activation of the
group of muscles with similar function. The feedback neurons
also provide putative inhibitory inputs on the antagonistic long-
itudinal muscles via the common target neurons, A02e, A02g, and
A03g. Thus, the circuit configuration allows simultaneous acti-
vation of a group of muscles and inhibition of the antagonistic
group of muscles in an intersegmentally coordinated manner.
Such circuit configurations may also underlie synergistic motor
control observed in other systems (e.g., muscle synergies”?).
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All shared target interneurons arborize dendrites in a cen-
trolateral region of the neuropil and receive inputs from the
bidirectional feedback neurons in the same domain (arrowheads
in Fig. 8b, c¢). The domain is distinct from the dorsal motor
domain and ventral somatosensory domain, thus identifying a
novel neuropil compartment where circuits responsible for
higher-order motor regulation are integrated. The common target
neurons are derived from different progenitor cells (neuroblasts;
AOlc and AOlci from NB1-237, A02e and A02g from NB 2-1%7,
A03g from NB7-1, and A23a from NB7-437) and their cell bodies
are scattered across the CNS. Therefore, there must be intricate
axon and dendrite guidance mechanisms independent of pro-
genitor identity3® that incorporate these neurons into the inte-
grated circuits and thus enable the higher-order motor
coordination. Our circuit mapping and analysis revealed exqui-
sitely and economically constructed neural circuits for motor
coordination, and provides a starting point for future studies of
how these circuits self-assemble during embryonic development
and have appeared through evolution.

Methods

Drosophila melanogaster strains. All animals were raised on standard cornmeal-
based food. Prior to optogenetic experiments, yeast paste containing all-trans
retinal (1 mM) was fed for 1-2 days. We used the following fly lines: period-
Gal4?>% (Bloomington #7127), the split-Gal4 drivers*%4 $502065-Gal4 (R32C05-
Pp65ADzp in attP40, R38E10-ZpGDBD in attP2), $526694-Gal4 (V1020818
Pp65ADzp in attP40, R91E03-ZpGDBD in attP2), $501817-Gal4 (ROSA07-p65ADzp
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in attP40, R70C09-ZpGDBD in attP2), $504495-Gald (R41G07-p65ADzp in attP40, et al.2%2%:30, PMSIs in the Al segment were identified and reconstructed within the

R78F07-ZpGDBD in attP2) and SS04399-Gal4 (R20A03-p65ADzp in attP40,
R93B07-ZpGDBD in attP2), capaR-Gal4 (Texada M.J. and Truman J.W., unpub-
lished), the Rubin-collection? R75H04-Gal4 (Bloomington #39909) and R36G02-

Gal4 (Bloomington #49939), eve[RRa-F]-Gal4*3, MCFO (multi-color flip-out)

lines*, UAS-mCD8::GFP*> (Bloomington #32194), UAS-GCaMP5G*¢ (Bloo-
mington #42037), UAS-KCNJ2:GFP*’ (Bloomington #6596), UAS-shibire's*8, UAS-
Syt::HA%, UAS-ChR2:T159C?3, LexAop-RGECO1%2, and mhc-GFP*.

Generation of transgenic lines. The codon usage in a sequence encoding a fusion

protein of CD4 and GCaMP6f was optimized for Drosophila melanogaster (Bio

Basic Inc, Canada). For generating UAS-CD4::GCaMP6f transgene, the DNA

fragment of CD4::GCaMP6f gene®'>2 with Kpnl site and translation enhancer

Syn21°3 at the 5’ end and Xbal site at the 3’ end was cloned into pJFRC28-
10xUAS-IVS-GFP-p10 plasmid>3. The transgene was inserted at attP40 and

VK00005 loci (BestGene Inc., USA) to generate UAS-CD4::GCaMP6f transgenic

lines. To generate R70C01-lexA line, the enhancer sequence of R70C01-Gal4 was

cloned into pBPLexA:p65Uw and pBPnlsLexA:GADAIUw plasmids®’. The trans-

genic lines were generated in the attP40 and VK00027 loci (BestGene Inc., USA).

Reconstruction of motor circuits using ssTEM data. Acquisition and analysis of

ssTEM data is described in Ohyama et al., Zwart et al., and Schneider-Mizell

8

ssTEM volume based on the axonal projection patterns and dendritic branches
(Supplementary Fig. 1). All synapses onto A02e and A02g were annotated and used
to find all presynaptic partners including Ifb-Fwd and Ifb-Bwd. Then, all synapses
onto or from Ifb-Fwd and Ifb-Bwd were annotated and used to identify presynaptic
and postsynaptic neurons of Ifb-Fwd and Ifb-Bwd. All synapses from A02e, A02g,
A01ci, A03g, A23a, and A31k were annotated and used to identify the downstream
of these interneurons.

Immunohistochemistry. Immunohistochemistry was performed in the 3rd instar
CNS by fixation with 3.7% formaldehyde for 30 min at room temperature, washing
with 0.2% Triton X-100 in PBS for 30 min at room temperature, blocking with
normal goat serum for 30 min at room temperature and staining with the following
antibodies at 4 °C overnight. Primary antibodies: rabbit or guinea pig anti-GFP
(Frontier science, Af2020 and Af1180, 1:1000), mouse anti-Fas2>* (DSHB #1D4,
1:10), rabbit anti-vGluT55 (1:1000), mouse anti-ChAT5¢ (DSHB #4B1, 1:50), rabbit
anti-GABA® (Sigma #A2052, 1:500), rabbit anti-DsRed (Clontech #632496, 1:500),
and rabbit anti-HA (Cell Signaling Technology #3724 s, 1:500). Secondary anti-
bodies: Alexa488 or Cy3-conjugated goat anti-rabbit IgG, Alexa488-conjugated
goat anti-guinea pig IgG and Alexa555 or Cy5-conjugated goat anti-mouse IgG
(Invitrogen, 1:500).

NATURE COMMUNICATIONS| (2019)10:2654 | https://doi.org/10.1038/s41467-019-10695-y | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-10695-y

ARTICLE

a Forward wave b Ifb-Fwd > Kir
Ctrl Ifb-Fwd > Kir
5 1.0 = 1.0
S o9 209 \/\\/\.\/’
£ 0-8 £ o's %
g - s z
‘E 0.7 E 0.7 o
=) =) ©
g 08 g 06 g
§ 0.5 § 0.5 S
2 0.4 t0 t1 2 0.4 t0 t1
ogL— Yy ¥ 03 A |
0 2 4 6 0 2 4 6
Time (s) Time (s)
¢ Backward wave d
Ctrl Ifb-Bwd > Kir
g 10 10
[0
N N
5 0.9 5 09 /‘/\//v\/ §
£ 08 £ 08
2 2 o°
z 07 z o7 5
206 2 06 B
o 2 Q
o
§ 0.5 (;; 05 S
2 04710 1 204 0
03 Y o3 Y ¥
0 2 4 6 0 2 4 6
Time (s) Time (s)
e 1.2
£ *kk
*k*k
810
g T
£ os8 5 8
£
——
-5 0-6 L é
S
= 04
c
8
= 0.2
'_
0.0 : : : r : -
Ctrl  Ifo-Fwd Ifo-Bwd  Ctrl  Ifb-Fwd Ifb-Bwd

> Kir > Kir

> Kir > Kir

Forward wave

Backward wave

Fig. 7 Ifb-Fwd and Ifb-Bwd are required for the contraction of transverse muscles. a-d Muscle imaging using mhc-GFP during forward (a, b) and backward
propagation (c, d). a, ¢ The lengths of transverse muscles M23 are plotted. b, d Images of body wall muscles during wave propagations. White arrows
indicate the contraction of the transverse muscle. Note the reduction in the contraction of transverse muscles during forward waves when the activity of
Ifb-Fwd is blocked (a, b) and the reduction in the muscle contraction during backward waves when the activity of Ifb-Bwd is blocked (¢, d). e Quantification
of the contraction of transverse muscles. Data size: 10-18 waves from 4 to 6 larvae for each group. ***p < 0.005 (Ifb-Fwd > Kir: p = 5.6 x10~%; Ifb-Fwd >
Kir: p=0.0031 by the two-sided Student's t-test with the Bonferroni correction). See Methods section for statistical analysis. Center line, median; box
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Calcium imaging. Third-instar larvae were dissected by microscissors?2. The CNS
was isolated by cutting off the nerves, tracheae and imaginal discs, and then placed
in a drop of saline on a MAS-coated slide glass (Matsunami glass, Japan). The
saline was replaced with TES buffer (TES 5 mM, NaCl 135 mM, KCI 5 mM, MgCl,
4 mM, CaCl, 2 mM, sucrose 36 mM; pH = 7.15). The fluorescence of GCaMP6f
was detected by a spin-disk confocal unit (CSU21, Yokogawa, Japan) and an
EMCCD camera (iXon, Andor Technology, Germany) attached to an upright
microscope, Axioskop2 FS (Zeiss, Germany) with a 60x water immersion objective
lens. Dual-color calcium imaging of GCaMP6f and R-GECO1 was carried out by
using a dual view system (CSU-DV, Solution Systems, Japan)?2. For detecting
peaks of the calcium imaging data in Fig. 6 and Supplementary Fig. 7, the original
raw data were smoothed by the Savitzuky-Golay filter. Data analyses were con-
ducted by Image] (NIH, USA) and Python3 scripts. For evaluating correlated
activity between Ifb neurons and A02e for each wave (Fig. 3), we calculated the
correlation coefficient between A02e activity (which was fit to the Gaussian
function) and a raw trace of Ifb neuron activity by Python3.

Larval locomotion assay. To conditionally inhibit neural activity using
temperature-sensitive dynamin mutant Shibire's*8, an agar plate (about 9 cm in

diameter) was held at 32 °C on a heat plate (ThermoPlate, Tokai Hit, Japan). Third-
instar wandering larvae were gently washed in deionized water and lifted on the
agar plate for acclimation (60 sec). The larvae were then videotaped under ste-
reoscopic microscopy (SZX16, Olympus, Japan). The speed of the propagation was
measured manually using Image] software (NIH).

Statistical analysis. In Fig. 7e, we performed a normality test by using the
Shapiro-Wilk test, with a = 0.05. Since data in Fig. 7e passed this test, we per-
formed the two-sided Student’s t-test with the Bonferroni correction for compar-
isons between multiple groups.

Analysis of muscle activity. We pinned down third-instar larvae on a Sylgard-
coated dish, cut along the dorsal side, and removed the internal tissues, while
leaving the CNS and all neuromuscular contacts intact. These larva fillets,
expressing GFP in muscles, were illuminated with the blue light of a mercury lamp
(X-Cite, Olympus, Japan) and monitored for spontaneous forward and backward
waves in TES buffer (see Calcium Imaging section), which were recorded by an
EMCCD camera (iXon, Andor Technology, Germany).
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In the case of optogenetic stimulation, the same light source was used to activate
ChR2 expressed in interneurons. The length of transverse muscles was traced
manually using ImageJ (NIH, USA). The length of longitudinal muscles was
measured by a custom Python3 script. In Fig. 7e, the minimum lengths of
transverse muscles (TMs) during wave propagations were normalized by the
lengths of relaxed TMs.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The code used for the analyses are available from the corresponding authors upon
reasonable request.
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