214 research outputs found

    Going for the Trunk

    Get PDF
    Although angiogenesis (new blood vessel formation) is an absolute requirement for tumor growth, therapies designed to treat cancer by targeting specific angiogenic factors have had limited success. One theory is that there are many different angiogenic factors that can compensate for the loss of a single factor. Therefore, a more effective strategy may be to move upstream, identify a factor that regulates the expression of many different downstream angiogenic mediators, and then measure the effect of blocking this single common factor on angiogenesis-mediated tumor growth

    The Mechanisms by Which the Ketone Body D-β-Hydroxybutyrate May Improve the Multiple Cellular Pathologies of Parkinson's Disease

    Get PDF
    Parkinson's disease, a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, is strongly associated with the death of dopaminergic neurons in the brain's substantia nigra. Although dopamine replacement therapy temporarily helps patients manage their motor symptoms, this current standard of care fails to address the underlying network of pathologies that contribute to the persistent death of dopaminergic neurons. Thus, new treatment approaches are needed that address the underlying pathologies and, thereby, slow or halt the progression of the actual disease. D-β-hydroxybutyrate – a ketone body produced by the liver to support brain function during periods of starvation – may provide an option. Lifestyle interventions that induce endogenous D-β-hydroxybutyrate production, such as caloric restriction and ketogenic diets, are known to increase healthspan and lifespan in animal models and are used to treat neurological disorders. The efficacy of these ketosis-inducing interventions, along with the recent development of commercially available D-β-hydroxybutyrate-based nutritional supplements, should inspire interest in the possibility that D-β-hydroxybutyrate itself exerts neuroprotective effects. This review provides a molecular model to justify the further exploration of such a possibility. Herein, we explore the cellular mechanisms by which the ketone body, D-β-hydroxybutyrate, acting both as a metabolite and as a signaling molecule, could help to prevent the development, or slow the progression of, Parkinson's disease. Specifically, the metabolism of D-β-hydroxybutyrate may help neurons replenish their depleted ATP stores and protect neurons against oxidative damage. As a G-protein-coupled receptor ligand and histone deacetylase inhibitor, D-β-hydroxybutyrate may further protect neurons against energy deficit and oxidative stress, while also decreasing damaging neuroinflammation and death by apoptosis. Restricted to the available evidence, our model relies largely upon the interpretation of data from the separate literatures on the cellular effects of D-β-hydroxybutyrate and on the pathogenesis of Parkinson's disease. Future studies are needed to reveal whether D-β-hydroxybutyrate actually has the potential to serve as an adjunctive nutritional therapy for Parkinson's disease

    LRP5, Bone Density, and Mechanical Stress: A Case Report and Literature Review

    Get PDF
    The Wnt-β-catenin pathway receptor, low-density lipoprotein receptor-related protein 5 (LRP5), is a known regulator of bone mineral density. It has been hypothesized that specific human polymorphisms in LRP5 impact bone density, in part, by altering the anabolic response of bone to mechanical loading. Although experiments in animal models support this hypothesis, there is limited evidence that LRP5 polymorphisms can alter the anabolic response of bone to mechanical loading in humans. Herein, we report a young male who harbors a rare LRP5 missense mutation (A745V) and who provides potential proof of principle for this mechanotransduction hypothesis for low bone density. The subject had no history of fractures until age 18, a year into a career in competitive distance running. As he continued to run over the following 2 years, his mileage threshold to fracture steadily and rapidly decreased until he was diagnosed with severe osteoporosis (lumbar spine BMD Z-score of −3.2). By contextualizing this case within the existing LRP5 and mechanical stress literature, we speculate that this represents the first documented case of an individual in whom a genetic mutation altered the anabolic response of bone to mechanical stress in a manner sufficient to contribute to osteoporosis

    Thyroid markers and body composition predict LDL-cholesterol change in lean healthy women on a ketogenic diet: experimental support for the lipid energy model

    Get PDF
    Introduction: There is a large heterogeneity in LDL-cholesterol change among individuals adopting ketogenic diets. Interestingly, lean metabolically healthy individuals seem to be particularly susceptible, with an inverse association between body mass index and LDL-cholesterol change. The lipid energy model proposes that, in lean healthy individuals, carbohydrate restriction upregulates systemic lipid trafficking to meet energy demands. To test if anthropometric and energy metabolism markers predict LDL-cholesterol change during carbohydrate restriction. Methods: Ten lean, healthy, premenopausal women who habitually consumed a ketogenic diet for ≥6 months were engaged in a three-phase crossover study consisting of continued nutritional ketosis, suppression of ketosis with carbohydrate reintroduction, and return to nutritional ketosis. Each phase lasted 21 days. The predictive performance of all available relevant variables was evaluated with the linear mixed-effects models. Results: All body composition metrics, free T3 and total T4, were significantly associated with LDL-cholesterol change. In an interaction model with BMI and free T3, both markers were significant independent and interacting predictors of LDL-cholesterol change. Neither saturated fat, HOMA-IR, leptin, adiponectin, TSH, nor rT3 was associated with LDL-cholesterol changes. Discussion: Among lean, healthy women undergoing carbohydrate restriction, body composition and energy metabolism markers are major drivers of LDL-cholesterol change, not saturated fat, consistent with the lipid energy model

    Exogenous ketosis in patients with type 2 diabetes : safety and effect on glycaemic control

    Get PDF
    Introduction Ketogenic diets have shown to improve glycaemic control in patients with type 2 diabetes. This study investigated the safety, tolerability, and effects on glycaemic control in patients with type 2 diabetes of an exogenous ketone monoester (KE) capable of inducing fasting-like elevations in serum β-hydroxybutyrate (βHB) without the need for caloric or carbohydrate restriction. Methods Twenty one participants (14 men and 7 women, aged 45 ± 11 years) with insulin-independent type 2 diabetes, and unchanged hypoglycaemic medication for the previous 6 months, were recruited for this non-randomised interventional study. Participants wore intermittent scanning glucose monitors (IS-GM) for a total of 6 weeks and were given 25 ml of KE 3 times daily for 4 weeks. Serum electrolytes, acid-base status, and βHB concentrations were measured weekly and cardiovascular risk markers were measured before and after the intervention. The primary endpoints were safety and tolerability, with the secondary endpoint being glycaemic control. Results The 21 participants consumed a total of 1,588 drinks (39.7 litres) of KE over the course of the intervention. Adverse reactions were mild and infrequent, including mild nausea, headache, and gastric discomfort following fewer than 0.5% of the drinks. Serum electrolyte concentrations, acid-base status, and renal function remained normal throughout the study. Compared to baseline, exogenous ketosis induced a significant decrease in all glycaemic control markers, including fructosamine (335 ± 60 μmol/L to 290 ± 49 μmol/L, p < .01), HbA1c (61 ± 10 mmol/mol to 55 ± 9 mmol/mol [7.7 ± 0.9% to 7.2 ± 0.9%], p < .01), mean daily glucose (7.8 ± 1.4 mM to 7.4 ± 1.3 mM [140 ± 23 mg/dl to 133 ± 25 mg/dl], p < .01) and time in range (67 ± 11% to 69 ± 10%, p < .01). Conclusions Constant ketone monoester consumption over 1 month was safe, well tolerated, and improved glycaemic control in patients with type 2 diabetes

    Control of human endometrial stromal cell motility by PDGF-BB, HB-EGF and trophoblast-secreted factors

    Get PDF
    Human implantation involves extensive tissue remodeling at the fetal-maternal interface. It is becoming increasingly evident that not only trophoblast, but also decidualizing endometrial stromal cells are inherently motile and invasive, and likely contribute to the highly dynamic processes at the implantation site. The present study was undertaken to further characterize the mechanisms involved in the regulation of endometrial stromal cell motility and to identify trophoblast-derived factors that modulate migration. Among local growth factors known to be present at the time of implantation, heparin-binding epidermal growth factor-like growth factor (HB-EGF) triggered chemotaxis (directed locomotion), whereas platelet-derived growth factor (PDGF)-BB elicited both chemotaxis and chemokinesis (non-directed locomotion) of endometrial stromal cells. Supernatants of the trophoblast cell line AC-1M88 and of first trimester villous explant cultures stimulated chemotaxis but not chemokinesis. Proteome profiling for cytokines and angiogenesis factors revealed neither PDGF-BB nor HB-EGF in conditioned media from trophoblast cells or villous explants, while placental growth factor, vascular endothelial growth factor and PDGF-AA were identified as prominent secretory products. Among these, only PDGF-AA triggered endometrial stromal cell chemotaxis. Neutralization of PDGF-AA in trophoblast conditioned media, however, did not diminish chemoattractant activity, suggesting the presence of additional trophoblast-derived chemotactic factors. Pathway inhibitor studies revealed ERK1/2, PI3 kinase/Akt and p38 signaling as relevant for chemotactic motility, whereas chemokinesis depended primarily on PI3 kinase/Akt activation. Both chemotaxis and chemokinesis were stimulated upon inhibition of Rho-associated, coiled-coil containing protein kinase. The chemotactic response to trophoblast secretions was not blunted by inhibition of isolated signaling cascades, indicating activation of overlapping pathways in trophoblast-endometrial communication. In conclusion, trophoblast signals attract endometrial stromal cells, while PDGF-BB and HB-EGF, although not identified as trophoblast-derived, are local growth factors that may serve to fine-tune directed and non-directed migration at the implantation site

    Validation of a Single-Nucleotide Polymorphism-Based Non-Invasive Prenatal Test in Twin Gestations : Determination of Zygosity, Individual Fetal Sex, and Fetal Aneuploidy

    Get PDF
    We analyzed maternal plasma cell-free DNA samples from twin pregnancies in a prospective blinded study to validate a single-nucleotide polymorphism (SNP)-based non-invasive prenatal test (NIPT) for zygosity, fetal sex, and aneuploidy. Zygosity was evaluated by looking for either one or two fetal genome complements, fetal sex was evaluated by evaluating Y-chromosome loci, and aneuploidy was assessed through SNP ratios. Zygosity was correctly predicted in 100% of cases (93/93; 95% confidence interval (CI) 96.1%-100%). Individual fetal sex for both twins was also called with 100% accuracy (102/102; 95% weighted CI 95.2%-100%). All cases with copy number truth were also correctly identified. The dizygotic aneuploidy sensitivity was 100% (10/10; 95% CI 69.2%-100%), and overall specificity was 100% (96/96; 95% weighted CI, 94.8%-100%). The mean fetal fraction (FF) of monozygotic twins (n = 43) was 13.0% (standard deviation (SD), 4.5%); for dizygotic twins (n = 79), the mean lower FF was 6.5% (SD, 3.1%) and the mean higher FF was 8.1% (SD, 3.5%). We conclude SNP-based NIPT for zygosity is of value when chorionicity is uncertain or anomalies are identified. Zygosity, fetal sex, and aneuploidy are complementary evaluations that can be carried out on the same specimen as early as 9 weeks' gestation

    Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth

    Get PDF
    Background The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance. Methods We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. To examine whether this gene demonstrating primate-specific evolution was associated with birth timing, we genotyped and analyzed 8 common single nucleotide polymorphisms (SNPs) in PLA2G4C in US Hispanic (n = 73 preterm, 292 control), US White (n = 147 preterm, 157 control) and US Black (n = 79 preterm, 166 control) mothers. Results Detailed structural and phylogenic analysis of PLA2G4C suggested a short genomic element within the gene duplicated from a paralogous highly conserved element on chromosome 1 specifically in primates. SNPs rs8110925 and rs2307276 in US Hispanics and rs11564620 in US Whites were significant after correcting for multiple tests (p < 0.006). Additionally, rs11564620 (Thr360Pro) was associated with increased metabolite levels of the prostaglandin thromboxane in healthy individuals (p = 0.02), suggesting this variant may affect PLA2G4C activity. Conclusions Our findings suggest that variation in PLA2G4C may influence preterm birth risk by increasing levels of prostaglandins, which are known to regulate labor.Children’s Discovery InstituteMarch of Dimes Birth Defects FoundationNational Institute of General Medical Sciences (U.S.) (grant T32 GM081739)Washington University (Saint Louis, Mo.) (Mr. and Mrs. Spencer T. Olin Fellowship for Women in Graduate Study)Sigrid Jusélius FoundationSigne and Anne Gyllenberg FoundationAcademy of FinlandVanderbilt University (Turner-Hazinski grant award

    Hypertension persisting after pre-eclampsia: a prospective cohort study at Mulago Hospital, Uganda.

    Get PDF
    BACKGROUND: Pre-eclampsia/eclampsia usually resolves after delivery but sometimes hypertension persists and cardiovascular disease develops later. Our objective was to determine the incidence and maternal socio-demographic and obstetric risk factors for persistence of hypertension in women with pre-eclampsia/eclampsia. METHODS: This was a prospective cohort study conducted from July 2009 to June 2011 at Mulago Hospital labour ward and postnatal clinics. We followed up 188 women admitted with pre-eclampsia/eclampsia until 3 months after delivery. Data was collected using interviewer-administered questionnaires, examination of participants and review of medical records. Stata (version12) software was used for data analysis. Univariable analysis was used to compute the relative risk of persistent hypertension at the 95% confidence level. This was followed by multivariable logistic regression analysis to determine factors independently associated with persistence of hypertension. RESULTS: 64 (34%) out of the 188 women analysed had persistent hypertension three months after delivery. Maternal age, gestational age at delivery and parity were predictors of persistent hypertension. CONCLUSION: The proportion of women with pre-eclampsia/eclampsia at risk of persistent hypertension at three months after delivery was high, with nearly one of three mothers remaining hypertensive. Follow up of mothers who develop pre-eclampsia is important so that early diagnosis and management of chronic hypertension can be made to avoid long term morbidity and mortality

    Insufficient maintenance DNA methylation is associated with abnormal embryonic development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early pregnancy loss (EPL) is a frustrating clinical problem, whose mechanisms are not completely understood. DNA methylation, which includes maintenance methylation and <it>de novo </it>methylation directed by DNA methyltransferases (DNMTs), is important for embryo development. Abnormal function of these DNMTs may have serious consequences for embryonic development.</p> <p>Methods</p> <p>To evaluate the possible involvement of DNA methylation in human EPL, the expression of DNMT proteins and global methylation of DNA were assessed in villous or decidua from EPL patients. The association of maintenance methylation with embryo implantation and development was also examined.</p> <p>Results</p> <p>We found that DNMT1 and DNMT3A were both expressed in normal human villous and decidua. DNMT1 expression and DNA global methylation levels were significantly down-regulated in villous of EPL. DNMT3A expression was not significantly changed in the EPL group compared to controls in either villous or decidua. We also found that disturbance of maintenance methylation with a DNMT1 inhibitor may result in a decreased global DNA methylation level and impaired embryonic development in the mouse model, and inhibit <it>in vitro </it>embryo attachment to endometrial cells.</p> <p>Conclusions</p> <p>Our results demonstrate that defects in DNA maintenance methylation in the embryo, not in the mother, are associated with abnormal embryonic implantation and development. The findings of the current study provide new insights into the etiology of EPL.</p
    corecore