10,052 research outputs found

    The periods of the intermediate polar RX J0153.3+7446

    Get PDF
    We present the first optical photometry of the counterpart to the candidate intermediate polar RX J0153.3+7446. This reveals an optical pulse period of 2333s +/- 5s. Reanalysis of the previously published ROSAT X-ray data reveals that the true X-ray pulse period is probably 1974s +/- 30s, rather than the 1414 s previously reported. Given that the previously noted orbital period of the system is 3.94 h, we are able to identify the X-ray pulse period with the white dwarf spin period and the optical pulse period with the rotation period of the white dwarf in the binary reference frame, as commonly seen in other intermediate polars. We thus confirm that RX J0153.3+7446 is indeed a typical intermediate polar.Comment: 4 pages, submitted to A&A Letter

    Heat addition to a subsonic boundary layer: A preliminary analytical study

    Get PDF
    A preliminary analytical study of the effects of heat addition to the subsonic boundary layer flow over a typical airfoil shape is presented. This phenomenon becomes of interest in the space shuttle mission since heat absorbed by the wing structure during re-entry will be rejected to the boundary layer during the subsequent low speed maneuvering and landing phase. A survey of existing literature and analytical solutions for both laminar and turbulent flow indicate that a heated surface generally destabilizes the boundary layer. Specifically, the boundary layer thickness is increased, the skin friction at the surface is decreased and the point of flow separation is moved forward. In addition, limited analytical results predict that the angle of attack at which a heated airfoil will stall is significantly less than the stall angle of an unheated wing. These effects could adversely affect the lift and drag, and thus the maneuvering capabilities of booster and orbiter shuttle vehicles

    Principles of Discrete Time Mechanics: IV. The Dirac Equation, Particles and Oscillons

    Get PDF
    We apply the principles of discrete time mechanics discussed in earlier papers to the first and second quantised Dirac equation. We use the Schwinger action principle to find the anticommutation relations of the Dirac field and of the particle creation operators in the theory. We find new solutions to the discrete time Dirac equation, referred to as oscillons on account of their extraordinary behaviour. Their principal characteristic is that they oscillate with a period twice that of the fundamental time interval T of our theory. Although these solutions can be associated with definite charge, linear momentum and spin, such objects should not be observable as particles in the continuous time limit. We find that for non-zero T they correspond to states with negative squared norm in Hilbert space. However they are an integral part of the discrete time Dirac field and should play a role in particle interactions analogous to the role of longitudinal photons in conventional quantum electrodynamics.Comment: 27 pages LateX; published versio

    Matrix Adhesion Polarizes Heart Progenitor Induction In The Invertebrate Chordate Ciona Intestinalis

    Get PDF
    Cell-matrix adhesion strongly influences developmental signaling. Resulting impacts on cell migration and tissue morphogenesis are well characterized. However, the in vivo impact of adhesion on fate induction remains ambiguous. Here, we employ the invertebrate chordate Ciona intestinalis to delineate an essential in vivo role for matrix adhesion in heart progenitor induction. In Ciona pre-cardiac founder cells, invasion of the underlying epidermis promotes localized induction of the heart progenitor lineage. We found that these epidermal invasions are associated with matrix adhesion along the pre-cardiac cell/epidermal boundary. Through targeted manipulations of RAP GTPase activity, we were able to manipulate pre-cardiac cell-matrix adhesion. Targeted disruption of pre-cardiac cell-matrix adhesion blocked heart progenitor induction. Conversely, increased matrix adhesion generated expanded induction. We were also able to selectively restore cell-matrix adhesion and heart progenitor induction through targeted expression of Ci-Integrin β2. These results indicate that matrix adhesion functions as a necessary and sufficient extrinsic cue for regional heart progenitor induction. Furthermore, time-lapse imaging suggests that cytokinesis acts as an intrinsic temporal regulator of heart progenitor adhesion and induction. Our findings highlight a potentially conserved role for matrix adhesion in early steps of vertebrate heart progenitor specification

    Evidence for polar jets as precursors of polar plume formation

    Full text link
    Observations from the Hinode/XRT telescope and STEREO/SECCHI/EUVI are utilized to study polar coronal jets and plumes. The study focuses on the temporal evolution of both structures and their relationship. The data sample, spanning April 7-8 2007, shows that over 90% of the 28 observed jet events are associated with polar plumes. EUV images (STEREO/SECCHI) show plume haze rising from the location of approximately 70% of the polar X-ray (Hinode/XRT) and EUV jets, with the plume haze appearing minutes to hours after the jet was observed. The remaining jets occurred in areas where plume material previously existed causing a brightness enhancement of the latter after the jet event. Short-lived, jet-like events and small transient bright points are seen (one at a time) at different locations within the base of pre-existing long-lived plumes. X-ray images also show instances (at least two events) of collimated-thin jets rapidly evolving into significantly wider plume-like structures that are followed by the delayed appearance of plume haze in the EUV. These observations provide evidence that X-ray jets are precursors of polar plumes, and in some cases cause brightenings of plumes. Possible mechanisms to explain the observed jet and plume relationship are discussed.Comment: 10 pages, 4 figures, accepted as APJ Lette

    Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon

    Get PDF
    In mathematical physical analyses of Szilard's engine and Maxwell's demon, a general assumption (explicit or implicit) is that one can neglect the energy needed for relocating the piston in Szilard's engine and for driving the trap door in Maxwell's demon. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the Second Law of Thermodynamics and of Landauer's erasure theorem are incorrect too. Our analyses of the fundamental information physical aspects of various type of control within Szilard's engine and Maxwell's demon indicate that the entropy production due to the necessary generation of information yield much greater energy dissipation than the energy Szilard's engine is able to produce even if all sources of dissipation in the rest of these demons (due to measurement, decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical meaning of control-information and the related entropy production. Criticism of recent experiments adde

    Predicting critical power in elite cyclists: questioning validity of the 3-min All-out test

    Get PDF
    Purpose: New applications of the critical power concept, such as the modelling of intermittent work capabilities, are exciting prospects for elite cycling. However, accurate calculation of the required parameters is traditionally time invasive and somewhat impractical. An alternative single test protocol (3-min All-out) has recently been proposed, but validation in an elite population is lacking. The traditional approach for parameter establishment, but with fewer tests, could also prove an acceptable compromise. Methods: Six senior Australian endurance track cycling representatives completed six efforts to exhaustion on two separate days over a three week period. These included 1, 4, 6, 8 and 10 minute self-paced efforts, plus the 3-min All-out protocol. Traditional work versus time calculations of CP and W’ using the five self-paced efforts were compared to calculations from the 3-min All-out protocol. The impact of using just two or three self-paced efforts for traditional CP and W’ estimation were also explored using thresholds of agreement (8W, 2.0kJ respectively). Results: CP estimated from the 3-min All-out approach was significantly higher than from the traditional approach (402±33W, 351±27W, p<0.001), whilst W’ was lower (15.5±3.0kJ, 24.3±4.0kJ, p=0.02). Five different combinations of two or three self-paced efforts led to CP estimates within the threshold of agreement, with only one combination deemed accurate for W’. Conclusions: In elite cyclists the 3-min All-out approach is not suitable to estimate CP when compared to the traditional method. However, reducing the number of tests used in the traditional method lessens testing burden whilst maintaining appropriate parameter accuracy.Jason C Bartram, Dominic Thewlis, David T Martin, Kevin I Norto

    Measurement of focusing properties for high numerical aperture optics using an automated submicron beamprofiler

    Full text link
    The focusing properties of three aspheric lenses with numerical aperture (NA) between 0.53 and 0.68 were directly measured using an interferometrically referenced scanning knife-edge beam profiler with sub-micron resolution. The results obtained for two of the three lenses tested were in agreement with paraxial gaussian beam theory. It was also found that the highest NA aspheric lens which was designed for 830nm was not diffraction limited at 633nm. This process was automated using motorized translation stages and provides a direct method for testing the design specifications of high numerical aperture optics.Comment: 6 pages 4 figure

    Effects of soft foam insulation impact

    Get PDF
    High temperature reusable surface insulation (HTRSI) tiles were impacted by a variety of foam insulation materials typical of the debris expected to strike the shuttle orbiter during the initial phases of flight. Failure of the HIRSI coating was strongly dependent on the density and size of the projectile. The failure threshold was as low as 140 ft/sec for rubber and as high as 740 ft/sec for styrofoam. In addition, the impact pressure was measured for a variety of debris materials as a function of velocity

    The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Optimization of the Spectral Line Inversion Code

    Full text link
    The Very Fast Inversion of the Stokes Vector (VFISV) is a Milne-Eddington spectral line inversion code used to determine the magnetic and thermodynamic parameters of the solar photosphere from observations of the Stokes vector in the 6173 A Fe I line by the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report on the modifications made to the original VFISV inversion code in order to optimize its operation within the HMI data pipeline and provide the smoothest solution in active regions. The changes either sped up the computation or reduced the frequency with which the algorithm failed to converge to a satisfactory solution. Additionally, coding bugs which were detected and fixed in the original VFISV release, are reported here.Comment: Accepted for publication in Solar Physic
    • …
    corecore