12 research outputs found

    Environmental harm and environmental victims: scoping out a ‘green victimology'

    Get PDF
    In this paper I intend to discuss the adaptability of victimological study to the question of ‘environmental victimisation’. The impact on those affected by environment crime, or other environmentally damaging activities, is one that has received scarce attention in the mainstream victimological literature (see Williams, 1996). The role or position of such victims in criminal justice and/or other processes has likewise rarely been topic of academic debate. I have recently expanded upon various aspects of this subject and surrounding issues at greater length (Hall, 2013) but for the purposes of this article I wish to expand specifically on what a so-called ‘green victimology’ might look like, together with some of the particular questions and challenges it will face

    Life-Cycle Assessment of Construction and Demolition Derived Biomass/Wood Waste Management

    No full text
    A life cycle assessment (LCA) of various end-of-life management options for construction and demolition (C&D) debris was conducted using the U.S. Environmental Protection Agency\u27s Municipal Solid Waste Decision Support Tool. A comparative LCA evaluated seven different management scenarios using the annual production of C&D debris in New Hampshire as the functional unit. Each scenario encompassed C&D debris transport, processing, separation, and recycling, as well as varying end-of-life management options for the C&D debris (e.g., combustion to generate electricity versus landfilling for the wood debris stream and recycling versus landfilling for the nonwood debris stream) and different bases for the electricity generation offsets (e.g., the northeastern U.S. power grid versus coal-fired power generation). A sensitivity analysis was also conducted by varying the energy content of the C&D wood debris and by examining the impact of basing the energy offsets on electricity generated from various fossil fuels. The results include impacts for greenhouse gas (GHG) emissions, criteria air pollutants, ancillary solid waste production, and organic and inorganic constituents in water emissions. Scenarios with nonwood C&D debris recycling coupled with combustion of C&D wood debris to generate electricity had lower impacts than other scenarios. The nonwood C&D debris recycling scenarios where C&D wood debris was landfilled resulted in less overall impact than the scenarios where all C&D debris was landfilled. The lowest impact scenario included nonwood C&D debris recycling with local combustion of the C&D wood debris to generate electricity, providing a net gain in energy production of more than 7 trillion British thermal units (BTU) per year and a 130,000 tons per year reduction in GHG emissions. The sensitivity analysis revealed that for energy consumption, the model is sensitive to the energy content of the C&D wood debris but insensitive to the basis for the energy offset, and the opposite is true for GHG emissions
    corecore