102 research outputs found
Probing the Nature of Short Swift Bursts via Deep INTEGRAL Monitoring of GRB 050925
We present results from Swift, XMM-Newton, and deep INTEGRAL monitoring in
the region of GRB 050925. This short Swift burst is a candidate for a newly
discovered soft gamma-ray repeater (SGR) with the following observational burst
properties: 1) galactic plane (b=-0.1 deg) localization, 2) 150 msec duration,
and 3) a blackbody rather than a simple power-law spectral shape (with a
significance level of 97%). We found two possible X-ray counterparts of GRB
050925 by comparing the X-ray images from Swift XRT and XMM-Newton. Both X-ray
sources show the transient behavior with a power-law decay index shallower than
-1. We found no hard X-ray emission nor any additional burst from the location
of GRB 050925 in ~5 Ms of INTEGRAL data. We discuss about the three BATSE short
bursts which might be associated with GRB 050925, based on their location and
the duration. Assuming GRB 050925 is associated with the H II regions (W 58) at
the galactic longitude of l=70 deg, we also discuss the source frame properties
of GRB 050925.Comment: 13 pages, 13 figures, accepted for publication in ASR special issue
on Neutron Stars and Gamma Ray Bursts, full resolution of Fig 5 is available
at
http://asd.gsfc.nasa.gov/Takanori.Sakamoto/GRB050925/integral_ibis_images.ep
Community-based organization perspectives on participating in state-wide community canvassing program aimed to reduce COVID-19 vaccine disparities in California
Background: Inequities in COVID-19 vaccine accessibility and reliable COVID-related information disproportionately affected marginalized racial and ethnic communities in the U.S. The Get Out the Vaccine (GOTVax) program, an innovative statewide government-funded COVID-19 vaccine canvassing program in California, aimed to reduce structural barriers to COVID-19 vaccination in high-risk communities with low vaccination rates. GOTVax consisted of a community-academic-government partnership with 34 local trusted community-based organizations’ (CBOs) to conduct COVID-19 vaccine outreach, education, and vaccine registration. The purpose of this qualitative evaluation study was to explore the barriers and facilitators of using local CBOs to deploy a geographically, racially, and ethnically diverse state-wide COVID-19 vaccine outreach program. Methods: Semi-structured online interviews were conducted with participating GOTVax CBO leaders from November 2021 to January 2022. Transcripts were analyzed using reflexive thematic analysis. Results: Thirty-one of 34 CBOs participated (91% response rate). Identified themes encompassed both facilitators and barriers to program participation. Key facilitators included leveraging trust through recognized entities; promoting empathetic, tailored outreach; and flexibility of milestone-based CBO funding contracts for rapid program implementation. Barriers included navigating community sociopolitical, geographic, and cultural factors; managing canvassers’ safety; desiring metrics for self-evaluation of outreach success; mitigating canvassing technology challenges; and concerns of program infrastructure initially limiting outreach. CBOs problem-solved barriers with academic and government partners. Conclusions: Between May and December 2021, the GOTVax program reached over 2 million California residents and registered over 60,000 residents for COVID-19 vaccination. Public health campaigns may improve benefits from leveraging the expertise of community-trusted CBOs and universities by providing flexible infrastructure and funding, allowing CBOs to seamlessly tailor outreach most applicable to local minoritized communities
A Coupled Electrical-Thermal-Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature
International audienceA coupled electrical-thermal-mechanical model is proposed aimed at the numerical modeling of Gleeble tension tests at a high temperature. A multidomain, multifield coupling resolution strategy is used for the solution of electrical, energy, and momentum conservation equations by means of the finite element method. Its application to ultra-high-strength steel is considered. After calibration with instrumented experiments, numerical results reveal that significant thermal gradients prevail in Gleeble tensile steel specimen in both axial and radial directions. Such gradients lead to the heterogeneous deformation of the specimen, which is a major difficulty for simple identification techniques of constitutive parameters, based on direct estimations of strain, strain rate, and stress. The proposed direct finite element coupled model can be viewed as an important achievement for subsequent inverse identification methods, which should be used to identify constitutive parameters for steel at a high temperature in the solid state and in the mushy state
Horizontal Branch Stars: The Interplay between Observations and Theory, and Insights into the Formation of the Galaxy
We review HB stars in a broad astrophysical context, including both variable
and non-variable stars. A reassessment of the Oosterhoff dichotomy is
presented, which provides unprecedented detail regarding its origin and
systematics. We show that the Oosterhoff dichotomy and the distribution of
globular clusters (GCs) in the HB morphology-metallicity plane both exclude,
with high statistical significance, the possibility that the Galactic halo may
have formed from the accretion of dwarf galaxies resembling present-day Milky
Way satellites such as Fornax, Sagittarius, and the LMC. A rediscussion of the
second-parameter problem is presented. A technique is proposed to estimate the
HB types of extragalactic GCs on the basis of integrated far-UV photometry. The
relationship between the absolute V magnitude of the HB at the RR Lyrae level
and metallicity, as obtained on the basis of trigonometric parallax
measurements for the star RR Lyrae, is also revisited, giving a distance
modulus to the LMC of (m-M)_0 = 18.44+/-0.11. RR Lyrae period change rates are
studied. Finally, the conductive opacities used in evolutionary calculations of
low-mass stars are investigated. [ABRIDGED]Comment: 56 pages, 22 figures. Invited review, to appear in Astrophysics and
Space Scienc
Quantum walks: a comprehensive review
Quantum walks, the quantum mechanical counterpart of classical random walks,
is an advanced tool for building quantum algorithms that has been recently
shown to constitute a universal model of quantum computation. Quantum walks is
now a solid field of research of quantum computation full of exciting open
problems for physicists, computer scientists, mathematicians and engineers.
In this paper we review theoretical advances on the foundations of both
discrete- and continuous-time quantum walks, together with the role that
randomness plays in quantum walks, the connections between the mathematical
models of coined discrete quantum walks and continuous quantum walks, the
quantumness of quantum walks, a summary of papers published on discrete quantum
walks and entanglement as well as a succinct review of experimental proposals
and realizations of discrete-time quantum walks. Furthermore, we have reviewed
several algorithms based on both discrete- and continuous-time quantum walks as
well as a most important result: the computational universality of both
continuous- and discrete- time quantum walks.Comment: Paper accepted for publication in Quantum Information Processing
Journa
Upstream Solutions: Does the Supplemental Security Income Program Reduce Disability in the Elderly?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72843/1/j.1468-0009.2007.00512.x.pd
A review of diagnostic and functional imaging in headache
The neuroimaging of
headache patients has revolutionised
our understanding of the pathophysiology
of primary headaches and provided
unique insights into these syndromes.
Modern imaging studies
point, together with the clinical picture,
towards a central triggering
cause. The early functional imaging
work using positron emission
tomography shed light on the genesis
of some syndromes, and has
recently been refined, implying that
the observed activation in migraine
(brainstem) and in several trigeminal-autonomic headaches (hypothalamic
grey) is involved in the pain
process in either a permissive or
triggering manner rather than simply
as a response to first-division nociception
per se. Using the advanced
method of voxel-based morphometry,
it has been suggested that there
is a correlation between the brain
area activated specifically in acute
cluster headache — the posterior
hypothalamic grey matter — and an
increase in grey matter in the same
region. No structural changes have
been found for migraine and medication
overuse headache, whereas
patients with chronic tension-type
headache demonstrated a significant
grey matter decrease in regions
known to be involved in pain processing.
Modern neuroimaging thus
clearly suggests that most primary
headache syndromes are predominantly
driven from the brain, activating
the trigeminovascular reflex and
needing therapeutics that act on both
sides: centrally and peripherally
Factors affecting body temperatures of toads
Factors influencing levels and rates of variation of body temperature ( T b ) in montane Bufo boreas boreas and in lowland Bufo boreas halophilus were investigated as an initial step toward understanding the role of natural thermal variation in the physiology and energetics of these ectothermic animals. Body temperatures of boreas can vary 25–30° C over 24-h periods. Such variation is primarily due to both nocturnal and diurnal activity and the physical characteristics of the montane environment. Bufo boreas halophilus are primarily nocturnal except during breeding and are voluntarily active at body temperatures ranging between 10 and 25° C. Despite variation in T b encountered in the field, boreas select a narrow range of T b in a thermal gradient, averaging 23.5 and 26.2° C for fasted individuals maintained under field conditions or acclimated to 20° C, respectively. In a thermal gradient the mean T b of fasted halophilus acclimated to 20° C is 23.9° C. Skin color of boreas varies in the field from very dark to light. The dark skins absorb approximately 4% more radiation than the light ones. Light colored boreas should absorb approximately 5% more radiation than similarly colored halophilus . Evaporative water losses increase directly with skin temperatures and vapor pressure deficit in both subspecies. Larger individuals heat and cool more slowly than smaller ones. Calculation of an enery budget for boreal toads suggests that they could sit in direct sunlight for long periods without fatally overheating, providing the skin was continually moist.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47722/1/442_2004_Article_BF00344732.pd
Recommended from our members
Swift Detects a Remarkable Gamma-Ray Burst, GRB 060614, That Introduces a New Classification Scheme
Gamma ray bursts (GRBs) are known to come in two duration classes, separated at {approx}2 s. Long bursts originate from star forming regions in galaxies, have accompanying supernovae (SNe) when near enough to observe and are likely caused by massive-star collapsars. Recent observations show that short bursts originate in regions within their host galaxies with lower star formation rates, consistent with binary neutron star (NS) or NS - black hole (BH) mergers. Moreover, although their hosts are predominantly nearby galaxies, no SNe have been so far associated with short GRBs. We report here on the bright, nearby GRB 060614 that does not fit in either class. Its {approx}102 s duration groups it with long GRBs, while its temporal lag and peak luminosity fall entirely within the short GRB subclass. Moreover, very deep optical observations exclude an accompanying supernova, similar to short GRBs. This combination of a long duration event without accompanying SN poses a challenge to both a collapsar and merging NS interpretation and opens the door on a new GRB classification scheme that straddles both long and short bursts
- …