99 research outputs found

    Kate Atkinson: Plotting to Be Read

    Get PDF
    Exploration of Kate Atkinson's recent fiction: the Case Histories series and Live After Life and a God in Ruin

    The Art of Fiction: Henry James and Robert Louis Stevenson

    Get PDF
    An analysis of the relationship between the two authors, their debates over romance and realism and their textual strategies as critic

    Feasibility of human lung ventilation imaging using highly polarized naturally abundant xenon and optimized three-dimensional steady-state free precession

    Get PDF
    Purpose To demonstrate the potential for high quality MRI of pulmonary ventilation using naturally abundant xenon (NAXe) gas. Methods MRI was performed at 1.5 Tesla (T) and 3 T on one healthy smoker and two healthy never-smokers. 129Xe gas was polarized to ∼25% using an in-house spin-exchange optical pumping polarizer fitted with a laser diode array with integrated volume holographic grating and optical train system. Volunteers inhaled 1 L of NAXe for an 8 to 15 s breathhold while MR images were acquired with full-lung coverage using a three-dimensional steady-state free precession sequence, optimized for maximum signal-to-noise ratio (SNR) at a given spatial resolution. For the purpose of image quality comparison, the MR acquisition was repeated at 1.5 T with 400 mL enriched xenon and 200 mL 3He. Results All NAXe lung images were of high quality, with mean SNRs of 25–40 (voxel 4.2 × 4.2 × 8/10 mm3) and ∼30% improvement at 3 T versus 1.5 T. The high SNR permitted identification of minor ventilation defects in the healthy smoker's lungs. NAXe images were of comparable SNR to those obtained with enriched xenon and 3He. Conclusion Optimization of MR pulse sequences and advances in polarization technology have facilitated high quality pulmonary ventilation imaging with inexpensive NAXe gas. Magn Reson Med 74:346–352, 2015

    Robin Jenkins: Perspectives on the Postcolonial

    Get PDF
    The chapter considers Jenkins’s colonial fiction from the perspective of his own experiences of colonialism and through the lens of postcolonial theory. Drawing on the brief biographical material available and archival sources in the National Library of Scotland, it outlines the ways in which teaching in Afghanistan (Kabul, 1957-9) and in Malaysia (Sabah, 1961-5) extended Jenkins’s interest in social and moral conflicts to issues of ethnicity. It examines Dust on the Paw (1961) as a striking engagement with difficult issues around interracial marriage and a bold confrontation of the political configurations of Afghan society. Jenkins’s interest in uncomfortable clashes, the essay suggests, makes his analysis of colonialism particularly effective but also problematic in its handling of gender and race. Dust on the Paw, and later novels which draw on his Asian experiences - The Tiger of Gold (1962) and The Holy Tree (1969) – are therefore considered in the context of debates within postcolonial theory and other critical readings of Jenkins. Finally, the essay assesses Jenkins’s own understanding of imperial contexts and their relevance to Scottish identities through discussion of his late novel Leila (1995). Keywords: otherness; identity; class; gender; postcolonialism; ethnicity; alterity; orientialism; Scotland; Afghanistan; Malaysia

    High resolution spectroscopy and chemical shift imaging of hyperpolarized 129 Xe dissolved in the human brain in vivo at 1.5 tesla

    Get PDF
    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in-house and 129Xe gas was polarized using spin-exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two-dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo

    Investigating rubidium density and temperature distributions in a high-throughput 129Xe-Rb spin-exchange optical pumping polarizer

    Get PDF
    Accurate knowledge of the rubidium (Rb) vapor density, [Rb] , is necessary to correctly model the spin dynamics of 129 Xe-Rb spin-exchange optical pumping (SEOP). Here we present a systematic evaluation of [Rb] within a high-throughput 129 Xe-Rb hyperpolarizer during continuous-flow SEOP. Near-infrared (52S1/2→52P1/2 (D1)/52P3/2 (D2)) and violet (52S1/2→62P1/2 /62P3/2) atomic absorption spectroscopy was used to measure [Rb] within 3.5 L cylindrical SEOP cells containing different spatial distributions and amounts of Rb metal. We were able to quantify deviation from the Beer-Lambert law at high optical depth for D2 and 62P3/2 absorption by comparison with measurements of the D1 and 62P1/2 absorption lines, respectively. D2 absorption deviates from the Beer-Lambert law at [Rb]D2>4×1017 m−3 whilst 52S1/2→62P3/2 absorption deviates from the Beer-Lambert law at [Rb]6P3/2>(4.16±0.01)×1019 m−3. The measured [Rb] was used to estimate a 129 Xe-Rb spin exchange cross section of γ′=(1.2±0.1)×10−21 m3 s−1, consistent with spin-exchange cross sections from the literature. Significant [Rb] heterogeneity was observed in a SEOP cell containing 1 g of Rb localized at the back of the cell. While [Rb] homogeneity was improved for a greater surface area of the Rb source distribution in the cell, or by using a Rb presaturator, the measured [Rb] was consistently lower than that predicted by saturation Rb vapor density curves. Efforts to optimize [Rb] and thermal management within spin polarizer systems are necessary to maximize potential future enhancements of this technology

    Reproducibility of quantitative indices of lung function and microstructure from 129Xe chemical shift saturation recovery (CSSR) MR spectroscopy

    Get PDF
    Purpose To evaluate the reproducibility of indices of lung microstructure and function derived from 129Xe chemical shift saturation recovery (CSSR) spectroscopy in healthy volunteers and patients with chronic obstructive pulmonary disease (COPD), and to study the sensitivity of CSSR-derived parameters to pulse sequence design and lung inflation level. Methods Preliminary data were collected from five volunteers on three occasions, using two implementations of the CSSR sequence. Separately, three volunteers each underwent CSSR at three different lung inflation levels. After analysis of these preliminary data, five COPD patients were scanned on three separate days, and nine age-matched volunteers were scanned three times on one day, to assess reproducibility. Results CSSR-derived alveolar septal thickness (ST) and surface-area-to-volume (S/V) ratio values decreased with lung inflation level (P < 0.001; P = 0.057, respectively). Intra-subject standard deviations of ST were lower than the previously measured differences between volunteers and subjects with interstitial lung disease. The mean coefficient of variation (CV) values of ST were 3.9 ± 1.9% and 6.0 ± 4.5% in volunteers and COPD patients, respectively, similar to CV values for whole-lung carbon monoxide diffusing capacity. The mean CV of S/V in volunteers and patients was 14.1 ± 8.0% and 18.0 ± 19.3%, respectively. Conclusion 129Xe CSSR presents a reproducible method for estimation of alveolar septal thickness

    Single breath-held acquisition of co-registered 3D 129Xe lung ventilation and anatomical proton images of the human lung with compressed sensing

    Get PDF
    Purpose To develop and assess a method for acquiring coregistered proton anatomical and hyperpolarized 129Xe ventilation MR images of the lungs with compressed sensing (CS) in a single breath hold. Methods Retrospective CS simulations were performed on fully sampled ventilation images acquired from one healthy smoker to optimize reconstruction parameters. Prospective same‐breath anatomical and ventilation images were also acquired in five ex‐smokers with an acceleration factor of 3 for hyperpolarized 129Xe images, and were compared to fully sampled images acquired during the same session. The following metrics were used to assess data fidelity: mean absolute error (MAE), root mean square error, and linear regression of the signal intensity between fully sampled and undersampled images. The effect of CS reconstruction on two quantitative imaging metrics routinely reported [percentage ventilated volume (%VV) and heterogeneity score] was also investigated. Results Retrospective simulations showed good agreement between fully sampled and CS‐reconstructed (acceleration factor of 3) images with MAE (root mean square error) of 3.9% (4.5%). The prospective same‐breath images showed a good match in ventilation distribution with an average R2 of 0.76 from signal intensity linear regression and a negligible systematic bias of +0.1% in %VV calculation. A bias of −1.8% in the heterogeneity score was obtained. Conclusion With CS, high‐quality 3D images of hyperpolarized 129Xe ventilation (resolution 4.2 × 4.2 × 7.5 mm3) can be acquired with coregistered 1H anatomical MRI in a 15‐s breath hold. The accelerated acquisition time dispenses with the need for registration between separate breath‐hold 129Xe and 1H MRI, enabling more accurate %VV calculation

    Imaging gas-exchange lung function and brain tissue uptake of hyperpolarized 129Xe using sampling density-weighted MRSI

    Get PDF
    PURPOSE: Imaging of the different resonances of hyperpolarized 129 Xe in the brain and lungs was performed using a 3D sampling density-weighted MRSI technique in healthy volunteers. METHODS: Four volunteers underwent dissolved-phase hyperpolarized 129 Xe imaging in the lung with the MRSI technique, which was designed to improve the point-spread function while preserving SNR (1799 phase-encoding steps, 14-s breath hold, 2.1-cm isotropic resolution). A frequency-tailored RF excitation pulse was implemented to reliably excite both the 129 Xe gas and dissolved phase (tissue/blood signal) with 0.1° and 10° flip angles, respectively. Images of xenon gas in the lung airspaces and xenon dissolved in lung tissue/blood were used to generate quantitative signal ratio maps. The method was also optimized and used for imaging dissolved resonances of 129 Xe in the brain in 2 additional volunteers. RESULTS: High-quality regional spectra of hyperpolarized 129 Xe were achieved in both the lung and the brain. Ratio maps of the different xenon resonances were obtained in the lung with sufficient SNR (> 10) at both 1.5 T and 3 T, making a triple Lorentzian fit possible and enabling the measurement of relaxation times and xenon frequency shifts on a voxel-wise basis. The imaging technique was successfully adapted for brain imaging, resulting in the first demonstration of 3D xenon brain images with a 2-cm isotropic resolution. CONCLUSION: Density-weighted MRSI is an SNR and encoding-efficient way to image 129 Xe resonances in the lung and the brain, providing a valuable tool to quantify regional spectroscopic information
    corecore