192 research outputs found

    In vivo genotoxicity and inflammatory effects of uncoated and coated CeO2 NPs in mice

    Get PDF
    P17-045 Ceria nanoparticles (CeO2 NPs) have several industrial applications and pharmacological potential due to their antioxidant properties. However, toxicity data on CeO2 NPs are scarce and show contradictory results. In the present study, uncoated, polyethylene glycol- and citrate-coated CeO2 NPs (4-8 nm) were administrated to C57Bl/6 mice by repeated dose (3×) pharyngeal aspiration using four different doses of each type of NPs (corresponding to 4.4, 8.8, 17.6 and 35.2 µg Ce2+/mouse/aspiration), and sampled 1 and 28 days after the last administration. DNA damage was assessed by the comet assay locally in bronchoalveolar lavage (BAL) and lung cells, and systemically in liver cells. Micronuclei, a biomarker of chromosome damage, were analysed in bone marrow and peripheral blood erythrocytes. Immunotoxicity was evaluated by BAL cell counting. Furthermore, histopathological effects on the lungs and biodistribution of the NPs (analysis of Ce2+ in several organs) were assessed. At 24-h, a significant increase in DNA damage was induced at the highest doses by uncoated and citrate-coated NPs in BAL cells. For these NPs a significant, but non-dose-dependent, effect was observed in lung and liver cells at 28-d. No systemic genotoxic effects were observed with any of the NPs. A dose-dependent accumulation of macrophages and activated lymphocytes was seen in the lungs for all the NPs, although a milder reaction was elicited by the coated NPs. Our findings show that short-term exposure of mice to CeO2 NPs induces pulmonary inflammation, and non-dose-dependent DNA damage, but no systemic genotoxicity. (Funded by the EU FP-7 GUIDEnano, Grant Agreement No.604387)

    Sister chromatid exchanges and micronuclei in peripheral lymphocytes of shoe factory workers exposed to solvents.

    Get PDF
    We examined sister chromatid exchanges (SCEs) and micronuclei (MN; cytokinesis-block method) in cultured peripheral lymphocytes from 52 female workers of two shoe factories and from 36 unexposed age- and sex-matched referents. The factory workers showed an elevated level of urinary hippuric acid, a biomarker of toluene exposure, and workplace air contained high concentrations of various organic solvents such as toluene, gasoline, acetone, and (in one of the plants only) ethylacetate and methylenediphenyl diisocyanate. The shoe factory workers showed a statistically significant higher frequency of micronucleated binucleate lymphocytes in comparison with the referents. This finding agreed with three preliminary MN determinations (each comprising 27-32 shoe workers and 16-20 controls) performed in one of the plants 2-5 years earlier. The shoe factory workers also had a lower average level of blood hemoglobin than the referents. In contrast, no difference was found between the groups in SCE analysis. Smokers showed significantly higher mean frequencies of SCEs per cell and high frequency cells (HFC) than nonsmokers. Aging was associated with increased MN rates and reduced cell proliferation. Polymorphism of the glutathione S-transferase M1 gene (GSTM1) did not affect the individual level of SCEs; but in smoking shoe workers an effect of the occupational exposure on the frequency of micronucleated cells could be seen only in GSTM1 null subjects. The low prevalence of the glutathione S-transferase T1 (GSTT1) null genotype precluded the evaluation of the influence of GSTT1 polymorphism. Our results show that the shoe factory workers have experienced genotoxic exposure, which is manifest as an increase in the frequency of MN, but not of SCEs, in peripheral lymphocytes. The exposures responsible for the MN induction could not be identified with certainty, but exposure to benzene in gasoline and methylenediphenyl diisocyanate may explain some of the findings

    Free radical scavenging and formation by multi-walled carbon nanotubes in cell free conditions and in human bronchial epithelial cells

    Get PDF
    Background: Certain multi-walled carbon nanotubes (MWCNTs) have been shown to elicit asbestos-like toxicological effects. To reduce needs for risk assessment it has been suggested that the physicochemical characteristics or reactivity of nanomaterials could be used to predict their hazard. Fibre-shape and ability to generate reactive oxygen species (ROS) are important indicators of high hazard materials. Asbestos is a known ROS generator, while MWCNTs may either produce or scavenge ROS. However, certain biomolecules, such as albumin – used as dispersants in nanomaterial preparation for toxicological testing in vivo and in vitro - may reduce the surface reactivity of nanomaterials. Methods: Here, we investigated the effect of bovine serum albumin (BSA) and cell culture medium with and without BEAS 2B cells on radical formation/scavenging by five MWCNTs, Printex 90 carbon black, crocidolite asbestos, and glass wool, using electron spin resonance (ESR) spectroscopy and linked this to cytotoxic effects measured by trypan blue exclusion assay. In addition, the materials were characterized in the exposure medium (e.g. for hydrodynamic size-distribution and sedimentation rate). Results: The test materials induced highly variable cytotoxic effects which could generally be related to the abundance and characteristics of agglomerates/aggregates and to the rate of sedimentation. All carbon nanomaterials were found to scavenge hydroxyl radicals (•OH) in at least one of the solutions tested. The effect of BSA was different among the materials. Two types of long, needle-like MWCNTs (average diameter >74 and 64.2 nm, average length 5.7 and 4.0 µm, respectively) induced, in addition to a scavenging effect, a dose-dependent formation of a unique, yet unidentified radical in both absence and presence of cells, which also coincided with cytotoxicity. Conclusions: Culture medium and BSA affects scavenging/production of •OH by MWCNTs, Printex 90 carbon black, asbestos and glass-wool. An unidentified radical is generated by two long, needle-like MWCNTs and these two CNTs were more cytotoxic than the other CNTs tested, suggesting that this radical could be related to the adverse effects of MWCNTs

    Pulmonary toxicity of synthetic amorphous silica–effects of porosity and copper oxide doping

    Get PDF
    Materials can be modified for improved functionality. Our aim was to test whether pulmonary toxicity of silica nanomaterials is increased by the introduction of: a) porosity; and b) surface doping with CuO; and whether c) these modifications act synergistically. Mice were exposed by intratracheal instillation and for some doses also oropharyngeal aspiration to: 1) solid silica 100 nm; 2) porous silica 100 nm; 3) porous silica 100 nm with CuO doping; 4) solid silica 300 nm; 5) porous silica 300 nm; 6) solid silica 300 nm with CuO doping; 7) porous silica 300 nm with CuO doping; 8) CuO nanoparticles 9.8 nm; or 9) carbon black Printex 90 as benchmark. Based on a pilot study, dose levels were between 0.5 and 162 µg/mouse (0.2 and 8.1 mg/kg bw). Endpoints included pulmonary inflammation (neutrophil numbers in bronchoalveolar fluid), acute phase response, histopathology, and genotoxicity assessed by the comet assay, micronucleus test, and the gamma-H2AX assay. The porous silica materials induced greater pulmonary inflammation than their solid counterparts. A similar pattern was seen for acute phase response induction and histologic changes. This could be explained by a higher specific surface area per mass unit for the most toxic particles. CuO doping further increased the acute phase response normalized according to the deposited surface area. We identified no consistent evidence of synergism between surface area and CuO doping. In conclusion, porosity and CuO doping each increased the toxicity of silica nanomaterials and there was no indication of synergy when the modifications co-occurred

    Effect of occupational exposure to cytostatics and nucleotide excision repair polymorphism on chromosomal aberrations frequency

    Get PDF
    Authors evaluated the incidence of total chromosomal aberrations (CA) and their types – chromatid-type (CTA) and chromosome-type (CSA) in peripheral blood lymphocytes from 72 oncologic unit's workers occupationally exposed to cytostatics in relationship to polymorphisms of DNA repair genes XPD, XPG and XPC. The cytogenetic analysis was used for determination of chromosomal aberrations frequency and PCR-RFLP method for polymorphisms of genes. Statistically higher frequency of total CA was detected in exposed group as compared to control (1.90±1.34% vs. 1.26±0.93%; Mann-Whitney U-test, p=0.001). There was not detected any difference between CTA and CSA (0.92±1.04% vs. 0.98±1.17%). Similarly, in genes XPD exon 23 and XPC exon 15 wasn't detected any difference neither in total chromosomal aberrations nor in CTA and CSA types. Statistically significant decrease of total chromosomal aberrations and CTA-type with presence of variant allele C was detected in gene XPG exon 15. Authors pointed out the importance of individual susceptibility factors in evaluation of effects of genotoxic agents, in that event, when the concentration does not meet the occupational exposure limit

    DNA repair genes XRCC1 and XRCC3 polymorphisms and their relationship with the level of micronuclei in breast cancer patients

    Get PDF
    Breast cancer (BC) is the most prevalent type worldwide, besides being one of the most common causes of death among women. It has been suggested that sporadic BC is most likely caused by low-penetrance genes, including those involved in DNA repair mechanisms. Furthermore, the accumulation of DNA damage may contribute to breast carcinogenesis. In the present study, the relationship between two DNA repair genes, viz., XRCC1 (Arg399Gln) and XRCC3 (Thr241Met) polymorphisms, and the levels of chromosome damage detected in 65 untreated BC women and 85 healthy controls, was investigated. Chromosome damage was evaluated through micronucleus assaying, and genotypes determined by PCR-RFLP methodology. The results showed no alteration in the risk of BC and DNA damage brought about by either XRCC1 (Arg399Gln) or XRCC3 (Thr241Met) action in either of the two groups. Nevertheless, on evaluating BC risk in women presenting levels of chromosome damage above the mean, the XRCC3Thr241Met polymorphism was found to be more frequent in the BC group than in the control, thereby leading to the conclusion that there is a slight association between XRCC3 (241 C/T) genotypes and BC risk in the subgroups with higher levels of chromosome damage

    Chromosomal aberration frequency in lymphocytes predicts the risk of cancer: results from a pooled cohort study of 22 358 subjects in 11 countries

    Get PDF
    Mechanistic evidence linking chromosomal aberration (CA) to early stages of cancer has been recently supported by the results of epidemiological studies that associated CA frequency in peripheral lymphocytes of healthy individuals to future cancer incidence. To overcome the limitations of single studies and to evaluate the strength of this association, a pooled analysis was carried out. The pooled database included 11 national cohorts and a total of 22 358 cancer-free individuals who underwent genetic screening with CA for biomonitoring purposes during 1965–2002 and were followed up for cancer incidence and/or mortality for an average of 10.1 years; 368 cancer deaths and 675 incident cancer cases were observed. Subjects were classified within each laboratory according to tertiles of CA frequency. The relative risk (RR) of cancer was increased for subjects in the medium [RR = 1.31, 95% confidence interval (CI) = 1.07–1.60] and in the high (RR = 1.41; 95% CI = 1.16–1.72) tertiles when compared with the low tertile. This increase was mostly driven by chromosome-type aberrations. The presence of ring chromosomes increased the RR to 2.22 (95% CI = 1.34–3.68). The strongest association was found for stomach cancer [RRmedium = 1.17 (95% CI = 0.37–3.70), RRhigh = 3.13 (95% CI = 1.17–8.39)]. Exposure to carcinogens did not modify the effect of CA levels on overall cancer risk. These results reinforce the evidence of a link between CA frequency and cancer risk and provide novel information on the role of aberration subclass and cancer type
    corecore