10 research outputs found

    Dynamic Batch Norm Statistics Update for Natural Robustness

    Full text link
    DNNs trained on natural clean samples have been shown to perform poorly on corrupted samples, such as noisy or blurry images. Various data augmentation methods have been recently proposed to improve DNN's robustness against common corruptions. Despite their success, they require computationally expensive training and cannot be applied to off-the-shelf trained models. Recently, it has been shown that updating BatchNorm (BN) statistics of an off-the-shelf model on a single corruption improves its accuracy on that corruption significantly. However, adopting the idea at inference time when the type of corruption is unknown and changing decreases the effectiveness of this method. In this paper, we harness the Fourier domain to detect the corruption type, a challenging task in the image domain. We propose a unified framework consisting of a corruption-detection model and BN statistics update that improves the corruption accuracy of any off-the-shelf trained model. We benchmark our framework on different models and datasets. Our results demonstrate about 8% and 4% accuracy improvement on CIFAR10-C and ImageNet-C, respectively. Furthermore, our framework can further improve the accuracy of state-of-the-art robust models, such as AugMix and DeepAug

    A deep active learning system for species identification and counting in camera trap images

    Get PDF
    1. A typical camera trap survey may produce millions of images that require slow, expensive manual review. Consequently, critical conservation questions may be answered too slowly to support decisionā€making. Recent studies demonstrated the potential for computer vision to dramatically increase efficiency in imageā€based biodiversity surveys; however, the literature has focused on projects with a large set of labeled training images, and hence many projects with a smaller set of labeled images cannot benefit from existing machine learning techniques. Furthermore, even sizable projects have struggled to adopt computer vision methods because classification models overfit to specific image backgrounds (i.e., camera locations). 2. In this paper, we combine the power of machine intelligence and human intelligence via a novel active learning system to minimize the manual work required to train a computer vision model. Furthermore, we utilize object detection models and transfer learning to prevent overfitting to camera locations. To our knowledge, this is the first work to apply an active learning approach to camera trap images. 3. Our proposed scheme can match stateā€ofā€theā€art accuracy on a 3.2 million image dataset with as few as 14,100 manual labels, which means decreasing manual labeling effort by over 99.5%. Our trained models are also less dependent on background pixels, since they operate only on cropped regions around animals. 4. The proposed active deep learning scheme can significantly reduce the manual labor required to extract information from camera trap images. Automation of information extraction will not only benefit existing camera trap projects, but can also catalyze the deployment of larger camera trap arrays

    A deep active learning system for species identification and counting in camera trap images

    Get PDF
    1. A typical camera trap survey may produce millions of images that require slow, expensive manual review. Consequently, critical conservation questions may be answered too slowly to support decisionā€making. Recent studies demonstrated the potential for computer vision to dramatically increase efficiency in imageā€based biodiversity surveys; however, the literature has focused on projects with a large set of labeled training images, and hence many projects with a smaller set of labeled images cannot benefit from existing machine learning techniques. Furthermore, even sizable projects have struggled to adopt computer vision methods because classification models overfit to specific image backgrounds (i.e., camera locations). 2. In this paper, we combine the power of machine intelligence and human intelligence via a novel active learning system to minimize the manual work required to train a computer vision model. Furthermore, we utilize object detection models and transfer learning to prevent overfitting to camera locations. To our knowledge, this is the first work to apply an active learning approach to camera trap images. 3. Our proposed scheme can match stateā€ofā€theā€art accuracy on a 3.2 million image dataset with as few as 14,100 manual labels, which means decreasing manual labeling effort by over 99.5%. Our trained models are also less dependent on background pixels, since they operate only on cropped regions around animals. 4. The proposed active deep learning scheme can significantly reduce the manual labor required to extract information from camera trap images. Automation of information extraction will not only benefit existing camera trap projects, but can also catalyze the deployment of larger camera trap arrays

    Data from: Machine learning to classify animal species in camera trap images: applications in ecology

    No full text
    Motionā€activated cameras (ā€œcamera trapsā€) are increasingly used in ecological and management studies for remotely observing wildlife and are amongst the most powerful tools for wildlife research. However, studies involving camera traps result in millions of images that need to be analysed, typically by visually observing each image, in order to extract data that can be used in ecological analyses. We trained machine learning models using convolutional neural networks with the ResNetā€18 architecture and 3,367,383 images to automatically classify wildlife species from camera trap images obtained from five states across the United States. We tested our model on an independent subset of images not seen during training from the United States and on an outā€ofā€sample (or ā€œoutā€ofā€distributionā€ in the machine learning literature) dataset of ungulate images from Canada. We also tested the ability of our model to distinguish empty images from those with animals in another outā€ofā€sample dataset from Tanzania, containing a faunal community that was novel to the model. The trained model classified approximately 2,000 images per minute on a laptop computer with 16 gigabytes of RAM. The trained model achieved 98% accuracy at identifying species in the United States, the highest accuracy of such a model to date. Outā€ofā€sample validation from Canada achieved 82% accuracy and correctly identified 94% of images containing an animal in the dataset from Tanzania. We provide an r package (Machine Learning for Wildlife Image Classification) that allows the users to (a) use the trained model presented here and (b) train their own model using classified images of wildlife from their studies. The use of machine learning to rapidly and accurately classify wildlife in camera trap images can facilitate nonā€invasive sampling designs in ecological studies by reducing the burden of manually analysing images. Our r package makes these methods accessible to ecologists

    Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning

    No full text
    Having accurate, detailed, and up-to-date information about the location and behavior of animals in the wild would improve our ability to study and conserve ecosystems. We investigate the ability to automatically, accurately, and inexpensively collect such data, which could help catalyze the transformation of many fields of ecology, wildlife biology, zoology, conservation biology, and animal behavior into ā€œbig dataā€ sciences. Motion-sensor ā€œcamera trapsā€ enable collecting wildlife pictures inexpensively, unobtrusively, and frequently. However, extracting information from these pictures remains an expensive, time-consuming, manual task. We demonstrate that such information can be automatically extracted by deep learning, a cutting-edge type of artificial intelligence. We train deep convolutional neural networks to identify, count, and describe the behaviors of 48 species in the 3.2 million-image Snapshot Serengeti dataset. Our deep neural networks automatically identify animals with >93.8% accuracy, and we expect that number to improve rapidly in years to come. More importantly, if our system classifies only images it is confident about, our system can automate animal identification for 99.3% of the data while still performing at the same 96.6% accuracy as that of crowdsourced teams of human volunteers, saving >8.4 y (i.e., >17,000 h at 40 h/wk) of human labeling effort on this 3.2 million-image dataset. Those efficiency gains highlight the importance of using deep neural networks to automate data extraction from camera-trap images, reducing a roadblock for this widely used technology. Our results suggest that deep learning could enable the inexpensive, unobtrusive, high-volume, and even real-time collection of a wealth of information about vast numbers of animals in the wild
    corecore