11,063 research outputs found
Stabilization of Hypersonic Boundary Layers by Porous Coatings
A second-mode stability analysis has been performed for a hypersonic boundary layer on a wall covered by a porous coating with equally spaced cylindrical blind microholes. Massive reduction of the second mode amplification is found to be due to the disturbance energy absorption by the porous layer. This stabilization effect was demonstrated by experiments recently conducted on a sharp cone in the T-5 high-enthalpy wind tunnel of the Graduate Aeronautical Laboratories of the California Institute of Technology. Their experimental confirmation of the theoretical predictions underscores the possibility that ultrasonically absorptive porous coatings may be exploited for passive laminar flow control on hypersonic vehicle surfaces
Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas
Extending our previous work \cite{filinov-etal.jpa03ik} we present a detailed
discussion of accuracy and practical applications of finite-temperature
pseudopotentials for two-component Coulomb systems. Different pseudopotentials
are discussed: i) the diagonal Kelbg potential, ii) the off-diagonal Kelbg
potential iii) the {\em improved} diagonal Kelbg potential, iv) an effective
potential obtained with the Feynman-Kleinert variational principle v) the
``exact'' quantum pair potential derived from the two-particle density matrix.
For the {\em improved} diagonal Kelbg potential a simple temperature dependent
fit is derived which accurately reproduces the ``exact'' pair potential in the
whole temperature range. The derived pseudopotentials are then used in path
integral Monte Carlo (PIMC) and molecular dynamics (MD) simulations to obtain
thermodynamical properties of strongly coupled hydrogen. It is demonstrated
that classical MD simulations with spin-dependent interaction potentials for
the electrons allow for an accurate description of the internal energy of
hydrogen in the difficult regime of partial ionization down to the temperatures
of about K. Finally, we point out an interesting relation between the
quantum potentials and effective potentials used in density functional theory.Comment: 18 pages, 11 figure
Phenomenology of Photoemission Lineshapes of High Tc Superconductors
We introduce a simple phenomenological form for the self-energy which allows
us to extract important information from angle resolved photoemission data on
the high Tc superconductor Bi2212. First, we find a rapid suppression of the
single particle scattering rate below Tc for all doping levels. Second, we find
that in the overdoped materials the gap Delta at all k-points on the Fermi
surface has significant temperature dependence and vanishes near Tc. In
contrast, in the underdoped samples such behavior is found only at k-points
close to the diagonal. Near (pi,0), Delta is essentially T-independent in the
underdoped samples. The filling-in of the pseudogap with increasing T is
described by a broadening proportional to T-Tc, which is naturally explained by
pairing correlations above Tc.Comment: 4 pages, revtex, 3 encapsulated postscript figure
Extraction of the Electron Self-Energy from Angle Resolved Photoemission Data: Application to Bi2212
The self-energy , the fundamental function which
describes the effects of many-body interactions on an electron in a solid, is
usually difficult to obtain directly from experimental data. In this paper, we
show that by making certain reasonable assumptions, the self-energy can be
directly determined from angle resolved photoemission data. We demonstrate this
method on data for the high temperature superconductor
(Bi2212) in the normal, superconducting, and pseudogap phases.Comment: expanded version (6 pages), to be published, Phys Rev B (1 Sept 99
The Temperature Evolution of the Spectral Peak in High Temperature Superconductors
Recent photoemission data in the high temperature cuprate superconductor
Bi2212 have been interpreted in terms of a sharp spectral peak with a
temperature independent lifetime, whose weight strongly decreases upon heating.
By a detailed analysis of the data, we are able to extract the temperature
dependence of the electron self-energy, and demonstrate that this intepretation
is misleading. Rather, the spectral peak loses its integrity above Tc due to a
large reduction in the electron lifetime.Comment: 5 pages, revtex, 4 encapsulated postscript figure
Photometric Redshift of X-Ray Sources in the Chandra Deep Field South
Based on the photometry of 10 near-UV, optical, and near-infrared bands of
the Chandra Deep Field South, we estimate the photometric redshifts for 342
X-ray sources, which constitute ~99% of all the detected X-ray sources in the
field. The models of spectral energy distribution are based on galaxies and a
combination of power-law continuum and emission lines. Color information is
useful for source classifications: Type-I AGN show non-thermal spectral
features that are distinctive from galaxies and Type-II AGN. The hardness ratio
in X-ray and the X-ray-to-optical flux ratio are also useful discriminators.
Using rudimentary color separation techniques, we are able to further refine
our photometric redshift estimations. Among these sources, 137 have reliable
spectroscopic redshifts, which we use to verify the accuracy of photometric
redshifts and to modify the model inputs. The average relative dispersion in
redshift distribution is ~8%, among the most accurate for photometric surveys.
The high reliability of our results is attributable to the high quality and
broad coverage of data as well as the applications of several independent
methods and a careful evaluation of every source. We apply our redshift
estimations to study the effect of redshift on broadband colors and to study
the redshift distribution of AGN. Our results show that both the hardness ratio
and U-K color decline with redshift, which may be the result of a K-correction.
The number of Type-II AGN declines significantly at z>2 and that of galaxies
declines at z>1. However, the distribution of Type-I AGN exhibits less redshift
dependence. As well, we observe a significant peak in the redshift distribution
at z=0.6. We demonstrate that our photometric redshift estimation produces a
reliable database for the study of X-ray luminosity of galaxies and AGN.Comment: 40 pages, 11 figures. Accepted for publication in the Astrophysical
Journa
Thermal Instability-Induced Interstellar Turbulence
We study the dynamics of phase transitions in the interstellar medium by
means of three-dimensional hydrodynamic numerical simulations. We use a
realistic cooling function and generic nonequilibrium initial conditions to
follow the formation history of a multiphase medium in detail in the absence of
gravity. We outline a number of qualitatively distinct stages of this process,
including a linear isobaric evolution, transition to an isochoric regime,
formation of filaments and voids (also known as "thermal" pancakes), the
development and decay of supersonic turbulence, an approach to pressure
equilibrium, and final relaxation of the multiphase medium. We find that 1%-2%
of the initial thermal energy is converted into gas motions in one cooling
time. The velocity field then randomizes into turbulence that decays on a
dynamical timescale E_k ~ t^-n, 1 < n < 2. While not all initial conditions
yield a stable two-phase medium, we examine such a case in detail. We find that
the two phases are well mixed with the cold clouds possessing a fine-grained
structure near our numerical resolution limit. The amount of gas in the
intermediate unstable phase roughly tracks the rms turbulent Mach number,
peaking at 25% when M_rms ~ 8, decreasing to 11% when M_rms ~ 0.4.Comment: To appear in the ApJ Letters, April 2002; 5 pages, 3 color figures,
mpeg animations available at http://akpc.ucsd.edu/ThermalLetter/thermal.htm
New therapies for relapsed castration-resistant prostate cancer based on peptide analogs of hypothalamic hormones
It is a pleasure to contribute our presentation at the International Prostate Forum of the Annual Meeting of the American Urological Association (AUA) to this special issue of the Asian Journal of Andrology
- …