876 research outputs found

    Immune cells and preterm labour:do invariant NKT cells hold the key?

    Get PDF
    We have developed our original made-to-measure (M2M) algorithm, PRIMAL, with the aim of modelling the Galactic disc from upcoming Gaia data. From a Milky Way like N-body disc galaxy simulation, we have created mock Gaia data using M0III stars as tracers, taking into account extinction and the expected Gaia errors. In PRIMAL, observables calculated from the N-body model are compared with the target stars, at the position of the target stars. Using PRIMAL, the masses of the N-body model particles are changed to reproduce the target mock data, and the gravitational potential is automatically adjusted by the changing mass of the model particles. We have also adopted a new resampling scheme for the model particles to keep the mass resolution of the N-body model relatively constant. We have applied PRIMAL to this mock Gaia data and we show that PRIMAL can recover the structure and kinematics of a Milky Way like barred spiral disc, along with the apparent bar structure and pattern speed of the bar despite the galactic extinction and the observational errors

    Barrier Mechanisms in the Developing Brain

    Get PDF
    The adult brain functions within a well-controlled stable environment, the properties of which are determined by cellular exchange mechanisms superimposed on the diffusion restraint provided by tight junctions at interfaces between blood, brain and cerebrospinal fluid (CSF). These interfaces are referred to as “the” blood–brain barrier. It is widely believed that in embryos and newborns, this barrier is immature or “leaky,” rendering the developing brain more vulnerable to drugs or toxins entering the fetal circulation from the mother. New evidence shows that many adult mechanisms, including functionally effective tight junctions are present in embryonic brain and some transporters are more active during development than in the adult. Additionally, some mechanisms present in embryos are not present in adults, e.g., specific transport of plasma proteins across the blood–CSF barrier and embryo-specific intercellular junctions between neuroependymal cells lining the ventricles. However developing cerebral vessels appear to be more fragile than in the adult. Together these properties may render developing brains more vulnerable to drugs, toxins, and pathological conditions, contributing to cerebral damage and later neurological disorders. In addition, after birth loss of protection by efflux transporters in placenta may also render the neonatal brain more vulnerable than in the fetus

    Book Reviews

    Get PDF

    The biological significance of brain barrier mechanisms:help or hindrance in drug delivery to the central nervous system?

    Get PDF
    Barrier mechanisms in the brain are important for its normal functioning and development. Stability of the brain’s internal environment, particularly with respect to its ionic composition, is a prerequisite for the fundamental basis of its function, namely transmission of nerve impulses. In addition, the appropriate and controlled supply of a wide range of nutrients such as glucose, amino acids, monocarboxylates, and vitamins is also essential for normal development and function. These are all cellular functions across the interfaces that separate the brain from the rest of the internal environment of the body. An essential morphological component of all but one of the barriers is the presence of specialized intercellular tight junctions between the cells comprising the interface: endothelial cells in the blood-brain barrier itself, cells of the arachnoid membrane, choroid plexus epithelial cells, and tanycytes (specialized glial cells) in the circumventricular organs. In the ependyma lining the cerebral ventricles in the adult brain, the cells are joined by gap junctions, which are not restrictive for intercellular movement of molecules. But in the developing brain, the forerunners of these cells form the neuroepithelium, which restricts exchange of all but the smallest molecules between cerebrospinal fluid and brain interstitial fluid because of the presence of strap junctions between the cells. The intercellular junctions in all these interfaces are the physical basis for their barrier properties. In the blood-brain barrier proper, this is combined with a paucity of vesicular transport that is a characteristic of other vascular beds. Without such a diffusional restrain, the cellular transport mechanisms in the barrier interfaces would be ineffective. Superimposed on these physical structures are physiological mechanisms as the cells of the interfaces contain various metabolic transporters and efflux pumps, often ATP-binding cassette (ABC) transporters, that provide an important component of the barrier functions by either preventing entry of or expelling numerous molecules including toxins, drugs, and other xenobiotics. In this review, we summarize these influx and efflux mechanisms in normal developing and adult brain, as well as indicating their likely involvement in a wide range of neuropathologies. There have been extensive attempts to overcome the barrier mechanisms that prevent the entry of many drugs of therapeutic potential into the brain. We outline those that have been tried and discuss why they may so far have been largely unsuccessful. Currently, a promising approach appears to be focal, reversible disruption of the blood-brain barrier using focused ultrasound, but more work is required to evaluate the method before it can be tried in patients. Overall, our view is that much more fundamental knowledge of barrier mechanisms and development of new experimental methods will be required before drug targeting to the brain is likely to be a successful endeavor. In addition, such studies, if applied to brain pathologies such as stroke, trauma, or multiple sclerosis, will aid in defining the contribution of brain barrier pathology to these conditions, either causative or secondary

    Overview of the University of Pennsylvania CORE System Standard Graphics Package Implementation

    Get PDF
    The CORE System is a proposed standard for a device-independent graphics system. The concept of a device-independent system was first developed in 1977 by the Graphics Standards Planning Committee (GSPC) of ACM Siggraph and later refined in 1979 [1,2]. The CORE System design has received favorable reviews and has been implemented by various vendors at several universities, and other computing facilities (e.g. [3,7]). The main objectives of the CORE System are to provide uniformity, compatibility, and flexibility in graphics software. Three advantages that the CORE system provides over non-standard graphics systems are device independence, program portability, and functional completeness. A large number of different graphics hardware devices currently exist with a wide range of available functions. The CORE System provides device independence by shielding the applications programmer from specific hardware characteristics. The shielding is at the functional level: the device-independent (DI) system uses internal routines to convert the application programmer\u27s functional commands to specific commands for the selected hardware device driver (DD). The progammer describes a graphical world to the CORE System in device-independent normalized device coordinates. The programmer also specifies the viewport on the logical view surface (output device) where a picture segment is to be placed. As the CORE System becomes the accepted standard graphics package, program portability will become more feasible. Program portability means the ability to transport application programs between two sites without requiring structural modifications. The CORE System was designed for functional completeness so that any graphics function a programmer desires is either included within the system or can be easily built on top of CORE System routines

    Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

    Get PDF
    Abstract Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and -11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4–5 weeks post conception, are between brain and embryonic cerebrospinal fluid (eCSF) and between outer surface of brain anlage and primary meninx. They already exclude α-fetoprotein and are immunopositive for both claudins, ABCC1 and ABCG2. ABCB1 is detectable within a week of blood vessels first penetrating into brain parenchyma (6–7 weeks post conception). ABCC1, ABCB1 and ABCG2 are present at blood-CSF barrier in all choroid plexuses from first appearance (7 weeks post conception). Outer CSF-brain interfaces are established between 9–11 weeks post conception exhibiting immunoreactivity for all three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain
    • 

    corecore