5,836 research outputs found

    In Defense of the Land Residual Theory and the Absence of a Business Value Component for Retail Property

    Get PDF
    The temptation is strong for arguing that property values can be broken down into land, improvements, and business value, as only land and improvements are subject to property tax. As sympathetic as the authors are to this motivation, the notion of a long-run business value component for retail property is refuted and the land residual value theory reasserted, while at the same time admitting the possibility of first owner entrepreneurial or development-based value creation. It is argued that any excess property productivity will eventually become attached to the land, and last that option values are an important aspect of land values that would be affected when suggesting that the appropriate value of a given property is the cost of substituting adjacent property.

    Control of DC power distribution system of a hybrid electric aircraft with inherent overcurrent protection

    Get PDF
    In this paper, a novel nonlinear control scheme for the on-board DC micro-grid of a hybrid electric aircraft is proposed to achieve voltage regulation of the low voltage (LV) bus and power sharing among multiple sources. Considering the accurate nonlinear dynamic model of each DC/DC converter in the DC power distribution system, it is mathematically proven that accurate power sharing can be achieved with an inherent overcurrent limitation for each converter separately via the proposed control design using Lyapunov stability theory. The proposed framework is based on the idea of introducing a constant virtual resistance at the input of each converter and a virtual controllable voltage that can be either positive or negative, leading to a bidirectional power flow. Compared to existing control strategies for on-board DC micro-grid systems, the proposed controller guarantees accurate power sharing, tight voltage regulation and an upper limit of each source's current at all times, including during transient phenomena. Simulation results of the LV dynamics of an aircraft on-board DC micro-grid are presented to verify the proposed controller performance in terms of voltage regulation, power sharing and the overcurrent protection capability

    Control of DC power distribution system of a hybrid electric aircraft with inherent overcurrent protection

    Get PDF
    In this paper, a novel nonlinear control scheme for the on-board DC micro-grid of a hybrid electric aircraft is proposed to achieve voltage regulation of the low voltage (LV) bus and power sharing among multiple sources. Considering the accurate nonlinear dynamic model of each DC/DC converter in the DC power distribution system, it is mathematically proven that accurate power sharing can be achieved with an inherent overcurrent limitation for each converter separately via the proposed control design using Lyapunov stability theory. The proposed framework is based on the idea of introducing a constant virtual resistance at the input of each converter and a virtual controllable voltage that can be either positive or negative, leading to a bidirectional power flow. Compared to existing control strategies for on-board DC micro-grid systems, the proposed controller guarantees accurate power sharing, tight voltage regulation and an upper limit of each source's current at all times, including during transient phenomena. Simulation results of the LV dynamics of an aircraft on-board DC micro-grid are presented to verify the proposed controller performance in terms of voltage regulation, power sharing and the overcurrent protection capability

    3D Simulations of MHD Jet Propagation Through Uniform and Stratified External Environments

    Get PDF
    We present a set of high-resolution 3D MHD simulations of steady light, supersonic jets, exploring the influence of jet Mach number and the ambient medium on jet propagation and energy deposition over long distances. The results are compared to simple self-similar scaling relations for the morphological evolution of jet-driven structures and to previously published 2D simulations. For this study we simulated the propagation of light jets with internal Mach numbers 3 and 12 to lengths exceeding 100 initial jet radii in both uniform and stratified atmospheres. The propagating jets asymptotically deposit approximately half of their energy flux as thermal energy in the ambient atmosphere, almost independent of jet Mach number or the external density gradient. Nearly one-quarter of the jet total energy flux goes directly into dissipative heating of the ICM, supporting arguments for effective feedback from AGNs to cluster media. The remaining energy resides primarily in the jet and cocoon structures. Despite having different shock distributions and magnetic field features, global trends in energy flow are similar among the different models. As expected the jets advance more rapidly through stratified atmospheres than uniform environments. The asymptotic head velocity in King-type atmospheres shows little or no deceleration. This contrasts with jets in uniform media with heads that are slowed as they propagate. This suggests that the energy deposited by jets of a given length and power depends strongly on the structure of the ambient medium. While our low-Mach jets are more easily disrupted, their cocoons obey evolutionary scaling relations similar to the high-Mach jets.Comment: Accepted in ApJ, 32 pages, 18 figures, animations available from: http://www.msi.umn.edu/Projects/twj/newsite/projects/radiojets/movies

    Electrical model of carbon fibre reinforced polymers for the development of electrical protection systems for more-electric aircraft

    Get PDF
    Carbon fibre reinforced polymers (CFRP) are increasingly used for structures on aircraft due to their superior mechanical properties compared to traditional materials, such as aluminium. Additionally, in order to improve aircraft performance, there is a continued trend for electrically driven loads on aircraft, increasing the on-board electrical power generation capacity and complexity of the electrical power system, including a desire to increase voltage levels and move towards DC distribution systems. Central to the reliable operation of an electrical power system is the development of an appropriate protection and fault management strategy. If an electrical earth fault occurs on a composite more-electric aircraft then the CFRP may form part of the route to ground. In order to develop an appropriate protection system and thus to understand the effects on engine generators it is necessary to investigate the fault response of this network. Hence a suitable electrical model of the CFRP material is required, which will enable CFRP to be included in a computationally-intensive systems-level simulation study of a more-electric aircraft (MEA) with fully switching power electronic converter models. This paper presents an experimentally validated impedance model of CFRP at an appropriate level of fidelity for use in systems level simulation platforms, enabling appropriate protection methods to be developed. The validated model considers the impact of the electrical bonding to ground, including the impedance added by a metallic frame that a CFRP panel may be mounted in. The simplicity of the model results in a less complex process to determine the expected impedance of the CFRP material, enabling a focus on the fault response of the system and subsequent development of appropriate protection solutions

    Protection system considerations for DC distributed electrical propulsion systems

    Get PDF
    Distributed electrical propulsion for aircraft, also known as turbo-electric distributed propulsion (TeDP), will require a complex electrical power system which can deliver power to multiple propulsor motors from gas turbine driven generators. To ensure that high enough power densities are reached, it has been proposed that such power systems are superconducting. Key to the development of these systems is the understanding of how faults propagate in the network, which enables possible protection strategies to be considered and following that, the development of an appropriate protection strategy to enable a robust electrical power system with fault ride-through capability. This paper investigates possible DC protection strategies for a radial DC architecture for a TeDP power system, in terms of their ability to respond appropriately to a DC fault and their impact on overall system weight and efficiency. This latter aspect has already been shown to be critical to shaping the overall TeDP concept competitiveness
    corecore