18,942 research outputs found
The effect of small-amplitude time-dependent changes to the surface morphology of a sphere
Typical approaches to manipulation of flow separation employ passive means or active techniques such as blowing and suction or plasma acceleration. Here it is
demonstrated that the flow can be significantly altered by making small changes to the shape of the surface. A proof of concept experiment is performed using a very simple time-dependent perturbation to the surface of a sphere: a roughness element of 1% of the sphere diameter is moved azimuthally around a sphere surface upstream of the uncontrolled laminar separation point, with a rotational frequency as large as the vortex shedding frequency. A key finding is that the non-dimensional time to observe
a large effect on the lateral force due to the perturbation produced in the sphere boundary layers as the roughness moves along the surface is ˆt =tU_(∞)/D ≈4. This slow
development allows the moving element to produce a tripped boundary layer over an extended region. It is shown that a lateral force can be produced that is as large as the
drag. In addition, simultaneous particle image velocimetry and force measurements reveal that a pair of counter-rotating helical vortices are produced in the wake, which
have a significant effect on the forces and greatly increase the Reynolds stresses in the wake. The relatively large perturbation to the flow-field produced by the small
surface disturbance permits the construction of a phase-averaged, three-dimensional (two-velocity component) wake structure from measurements in the streamwise/radial
plane. The vortical structure arising due to the roughness element has implications for flow over a sphere with a nominally smooth surface or distributed roughness. In
addition, it is shown that oscillating the roughness element, or shaping its trajectory, can produce a mean lateral force
Symmetry of the Gap in Bi2212 from Photoemission Spectroscopy
In a recent Letter, Shen et al have detected a large anisotropy of the
superconducting gap in Bi2212, consistent with d-wave symmetry, from
photoemission spectroscopy. Moreover, they claim that the change in their
spectra as a function of aging is also consistent with such an intrepretation.
In this Comment, I show that the latter statement is not entirely correct, in
that the data as a function of aging are inconsistent with a d-wave gap but are
consistent with an anisotropic s-wave gap.Comment: 3 pages (Plain TeX with macros), plus 1 postscript figur
On the Physical Origin of OVI Absorption-Line Systems
We present a unified analysis of the O{\sc vi} absorption-lines seen in the
disk and halo of the Milky Way, high velocity clouds, the Magellanic Clouds,
starburst galaxies, and the intergalactic medium. We show that these disparate
systems define a simple relationship between the O{\sc vi} column density and
absorption-line width that is independent of the Oxygen abundance over the
range O/H 10% to twice solar. We show that this relation is exactly that
predicted theoretically as a radiatively cooling flow of hot gas passes through
the coronal temperature regime - independent of its density or metallicity (for
O/H 0.1 solar). Since most of the intregalactic O{\sc vi} clouds obey
this relation, we infer that they can not have metallicities less than a few
percent solar. In order to be able to cool radiatively in less than a Hubble
time, the intergalactic clouds must be smaller than 1 Mpc in size. We
show that the cooling column densities for the O{\sc iv}, O{\sc v}, Ne{\sc v},
and Ne{\sc vi} ions are comparable to those seen in O{\sc vi}. This is also
true for the Li-like ions Ne{\sc viii}, Mg{\sc x}, and Si{\sc xii} (if the gas
is cooling from K). All these ions have strong resonance lines
in the extreme-ultraviolet spectral range, and would be accessible to at
0.2 to 0.8. We also show that the Li-like ions can be used to probe
radiatively cooling gas at temperatures an order-of-magnitude higher than where
their ionic fraction peaks. We calculate that the H-like (He-like) O, Ne, Mg,
Si, and S ions have cooling columns of cm. The O{\sc vii},
O{\sc viii}, and Ne{\sc ix} X-ray absorption-lines towards PKS 2155-304 may
arise in radiatively cooling gas in the Galactic disk or halo.Comment: 25 pages, 5 figure
The Temperature Evolution of the Spectral Peak in High Temperature Superconductors
Recent photoemission data in the high temperature cuprate superconductor
Bi2212 have been interpreted in terms of a sharp spectral peak with a
temperature independent lifetime, whose weight strongly decreases upon heating.
By a detailed analysis of the data, we are able to extract the temperature
dependence of the electron self-energy, and demonstrate that this intepretation
is misleading. Rather, the spectral peak loses its integrity above Tc due to a
large reduction in the electron lifetime.Comment: 5 pages, revtex, 4 encapsulated postscript figure
Recommended from our members
The role of consumption in material reduction opportunities: the impact of product lifetime in supplying the UK steel demand
Most of the products purchased in the UK are manufactured in other countries. As a result, worldwide greenhouse gases (GHG) emissions released to manufacture all products purchased in the UK are significantly higher than the UK territorial emissions. More than one half of global industrial emissions result from the use of steel, cement, paper, plastics, and aluminium. In this paper, the UK consumption of products that embody these five materials is estimated. For steel, which is the most widely used among these five materials, consumption and accumulation patterns are examined across four product categories. The impact of steel product lifetime extension is examined for the UK as one option for material demand reduction at the consumption stage of the supply chain. Different levels of steel product lifetimes are simulated for the UK in 2050 and their impacts are examined in terms of UK steel production, implicit steel imports, and global carbon dioxide emissions. Steel product lifetime extension promotes a reduction in the need for steel imports, by reducing the demand for new steel, which leads to lower carbon dioxide emissions required to supply the UK steel demand. The results demonstrate the criticality of a focus on the consumption stage, since any interventions made towards demand reduction of end-use goods leads to material reduction across the supply chain
Chain configurations in light nuclei
The model of nuclear matter built from alpha-particles is proposed. The
strong deformed shape for doubly even N=Z nuclides from carbon to magnesium has
been determined according to this model. In this paper we undertake very simple
approach, which assumes the existence of low lying chain configurations.Comment: 6 pages, 5 figure
- …