14 research outputs found

    Antimicrobial resistance monitoring and surveillance in the meat chain: A report from five countries in the European Union and European Economic Area

    Get PDF
    Background The emergence of antimicrobial resistance (AMR) in zoonotic foodborne pathogens (Salmonella, Campylobacter) and indicator microorganisms (E. coli, enterococci) is a major public health risk. Zoonotic bacteria, resistant to antimicrobials, are of special concern because they might compromise the effective treatment of infections in humans. Scope and approach In this review, the AMR monitoring and surveillance programmes in five selected countries within European Union (EU) and European Economic Area (EEA) are described. The sampling schemes, susceptibility testing for AMR identification, clinical breakpoints (clinical resistance) and epidemiological cut-off values (microbiological resistance) were considered to reflect on the most important variations between and within food-producing animal species, between countries, and to identify the most effective approach to tackle and manage the antimicrobial resistance in the food chain. Key findings and conclusions The science-based monitoring of AMR should encompass the whole food chain, supported with public health surveillance and should be conducted in accordance with ‘Zoonoses Directive’ (99/2003/EC). Such approach encompasses the integrated AMR monitoring in food animals, food and humans in the whole food (meat) chain continuum, e.g. pre-harvest (on-farm), harvest (in abattoir) and post-harvest (at retail). The information on AMR in critically important antimicrobials (CIA) for human medicine should be of particular importance

    Study protocol: a randomised controlled trial of the effects of a multi-modal exercise program on cognition and physical functioning in older women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intervention studies testing the efficacy of cardiorespiratory exercise have shown some promise in terms of improving cognitive function in later life. Recent developments suggest that a multi-modal exercise intervention that includes motor as well as physical training and requires sustained attention and concentration, may better elicit the actual potency of exercise to enhance cognitive performance. This study will test the effect of a multi-modal exercise program, for older women, on cognitive and physical functioning.</p> <p>Methods/design</p> <p>This randomised controlled trial involves community dwelling women, without cognitive impairment, aged 65–75 years. Participants are randomised to exercise intervention or non-exercise control groups, for 16 weeks. The intervention consists of twice weekly, 60 minute, exercise classes incorporating aerobic, strength, balance, flexibility, co-ordination and agility training. Primary outcomes are measures of cognitive function and secondary outcomes include physical functioning and a neurocognitive biomarker (brain derived neurotrophic factor). Measures are taken at baseline and 16 weeks later and qualitative data related to the experience and acceptability of the program are collected from a sub-sample of the intervention group.</p> <p>Discussion</p> <p>If this randomised controlled trial demonstrates that multimodal exercise (that includes motor fitness training) can improve cognitive performance in later life, the benefits will be two-fold. First, an inexpensive, effective strategy will have been developed that could ameliorate the increased prevalence of age-related cognitive impairment predicted to accompany population ageing. Second, more robust evidence will have been provided about the mechanisms that link exercise to cognitive improvement allowing future research to be better focused and potentially more productive.</p> <p>Trial registration</p> <p>Australian and New Zealand Clinical Trial Registration Number: ANZCTR12612000451808</p

    Higher CSF sTREM2 attenuates ApoE4-related risk for cognitive decline and neurodegeneration

    No full text
    Background!#!The Apolipoprotein E ε4 allele (i.e. ApoE4) is the strongest genetic risk factor for sporadic Alzheimer's disease (AD). TREM2 (i.e. Triggering receptor expressed on myeloid cells 2) is a microglial transmembrane protein brain that plays a central role in microglia activation in response to AD brain pathologies. Whether higher TREM2-related microglia activity modulates the risk to develop clinical AD is an open question. Thus, the aim of the current study was to assess whether higher sTREM2 attenuates the effects of ApoE4-effects on future cognitive decline and neurodegeneration.!##!Methods!#!We included 708 subjects ranging from cognitively normal (CN, n = 221) to mild cognitive impairment (MCI, n = 414) and AD dementia (n = 73) from the Alzheimer's disease Neuroimaging Initiative. We used linear regression to test the interaction between ApoE4-carriage by CSF-assessed sTREM2 levels as a predictor of longitudinally assessed cognitive decline and MRI-assessed changes in hippocampal volume changes (mean follow-up of 4 years, range of 1.7-7 years).!##!Results!#!Across the entire sample, we found that higher CSF sTREM2 at baseline was associated with attenuated effects of ApoE4-carriage (i.e. sTREM2 x ApoE4 interaction) on longitudinal global cognitive (p = 0.001, Cohen's f!##!Conclusion!#!Our results suggest that a higher CSF sTREM2 levels are associated with attenuated ApoE4-related risk for future cognitive decline and AD-typical neurodegeneration. These findings provide further evidence that TREM2 may be protective against the development of AD
    corecore