9 research outputs found

    Crosstalk between synovial macrophages and fibroblasts in rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune disease associated with chronic inflammation of joints. Abnormally activated cells such as synovial macrophages and synovial fibroblasts induce RA pathogenesis and ultimately joint destruction. Since macrophages can change their own characteristics depending on the microenvironmental condition, it has been suggested that activation and remission of RA are regulated by crosstalk between synovial macrophages and other cells. Moreover, recent findings of heterogeneity of synovial macrophages and fibroblasts support the idea that complex interactions regulate RA from its onset to remission. Importantly, an understanding of the intercellular crosstalk in RA is far from complete. Here, we summarize the molecular mechanisms underlying the pathological development of RA with particular reference to the crosstalk between synovial macrophages and fibroblasts

    Bacterial Contamination in an Egg-breaking Factory and Its Control

    No full text

    Additional file 3: Figure S1. of EphA receptors and ephrin-A ligands are upregulated by monocytic differentiation/maturation and promote cell adhesion and protrusion formation in HL60 monocytes

    No full text
    Immunofluorescence micrographs showing vinculin and paxillin localization in HL60 cell from the VD-TNF group. HL60 cells from the VD-TNF group were cultured on a coverslip surface on which EphA2-Fc or ephrin-A1-Fc and Fc plus Matrigel were adsorbed. To visualize focal adhesions, cells fixed with 4% paraformaldehyde were incubated with 0.02% Triton X-100 in PBS and then with a mixture of an anti-human vinculin mouse monoclonal antibody (hVIN-1, Sigma-Aldrich) at a dilution of 1:200 and an anti-human paxillin rabbit monoclonal antibody (Y113, Abcam, Cambridge, UK) at a dilution of 1:250 in 1% BSA-PBS for 60 min at 32 °C. After washing with PBS, the cells were incubated with a mixture of Alexa 488-conjugated goat anti-mouse IgG (5 μg/mL; Molecular Probes) and Alexa 568-conjugated donkey anti-rabbit IgG (5 μg/mL; Molecular Probes) in 1% BSA-PBS for 30 min at 32°C. After mounting with PermaFluor (Thermo Fisher Scientific), fluorescence images of vinculin (green) and paxillin immunostaining (red) were photographed. (PPTX 976 kb

    Effects of Multimodal Analgesic Protocol, with Buprenorphine and Meloxicam, on Mice Well-Being: A Dose Finding Study

    No full text
    The anesthetic or analgesic agent of choice, route and frequency of anesthetic or analgesic administration, and stressors induce distress during the perioperative period. We evaluated a multimodal analgesic protocol using buprenorphine and meloxicam on the well-being of mice. Twenty-four Slc:ICR male mice were divided into control, anesthesia + analgesia, and surgery + anesthesia + analgesia groups. Tap water (orally: PO) and water for injection (subcutaneous: SC) were administered to the control group. Buprenorphine was administered twice (SC, 0.1 mg/kg/8 h) and meloxicam was administered thrice (PO, 5 mg/kg/24 h) to the anesthesia + analgesia and surgery + anesthesia + analgesia groups. The mice were subjected to laparotomy and assessed for several parameters. Even in absence of surgical pain, the anesthesia + analgesia group presented the same negative effects as the surgery + anesthesia + analgesia group. This multimodal analgesic protocol for mice was expected to have an analgesic effect on pain associated with laparotomy but was not sufficient to prevent food intake and weight decrease. This does not negate the need to administer analgesics, but suggests the need to focus on and care not only about the approach to relieve pain associated with surgery, but also other types of distresses to minimize negative side effects that may interfere with postoperative recovery in mice

    GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer

    Get PDF
    The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer

    GPRC5A facilitates cell proliferation through cell cycle regulation and correlates with bone metastasis in prostate cancer

    No full text
    The prognosis of patients with progressive prostate cancers that are hormone refractory and/or have bone metastasis is poor. Multiple therapeutic targets to improve prostate cancer patient survival have been investigated, including orphan GPCRs. In our study, we identified G Protein-Coupled Receptor Class C Group 5 Member A (GPRC5A) as a candidate therapeutic molecule using integrative gene expression analyses of registered data sets for prostate cancer cell lines. Kaplan-Meier analysis of TCGA data sets revealed that patients who have high GPRC5A expression had significantly shorter overall survival. PC3 prostate cancer cells with CRISPR/Cas9-mediated GPRC5A knockout exhibited significantly reduced cell proliferation both in vitro and in vivo. RNA-seq revealed that GPRC5A KO PC3 cells had dysregulated expression of cell cycle-related genes, leading to cell cycle arrest at the G2/M phase. Furthermore, the registered gene expression profile data set showed that the expression level of GPRC5A in original lesions of prostate cancer patients with bone metastasis was higher than that without bone metastasis. In fact, GPRC5A KO PC3 cells failed to establish bone metastasis in xenograft mice models. In addition, our clinical study revealed that GPRC5A expression levels in prostate cancer patient samples were significantly correlated with bone metastasis as well as the patient's Gleason score (GS). Combined assessment with the immunoreactivity of GPRC5A and GS displayed higher specificity for predicting the occurrence of bone metastasis. Together, our findings indicate that GPRC5A can be a possible therapeutic target and prognostic marker molecule for progressive prostate cancer
    corecore