12 research outputs found

    High Excitation Molecular Gas in the Galactic Center Loops; 12CO(J =2-1 and J =3-2) Observations

    Full text link
    We have carried out 12CO(J =2-1) and 12CO(J =3-2) observations at spatial resolutions of 1.0-3.8 pc toward the entirety of loops 1 and 2 and part of loop 3 in the Galactic center with NANTEN2 and ASTE. These new results revealed detailed distributions of the molecular gas and the line intensity ratio of the two transitions, R3-2/2-1. In the three loops, R3-2/2-1 is in a range from 0.1 to 2.5 with a peak at ~ 0.7 while that in the disk molecular gas is in a range from 0.1 to 1.2 with a peak at 0.4. This supports that the loops are more highly excited than the disk molecular gas. An LVG analysis of three transitions, 12CO J =3-2 and 2-1 and 13CO J =2-1, toward six positions in loops 1 and 2 shows density and temperature are in a range 102.2 - 104.7 cm-3 and 15-100 K or higher, respectively. Three regions extended by 50-100 pc in the loops tend to have higher excitation conditions as characterized by R3-2/2-1 greater than 1.2. The highest ratio of 2.5 is found in the most developed foot points between loops 1 and 2. This is interpreted that the foot points indicate strongly shocked conditions as inferred from their large linewidths of 50-100 km s-1, confirming the suggestion by Torii et al. (2010b). The other two regions outside the foot points suggest that the molecular gas is heated up by some additional heating mechanisms possibly including magnetic reconnection. A detailed analysis of four foot points have shown a U shape, an L shape or a mirrored-L shape in the b-v distribution. It is shown that a simple kinematical model which incorporates global rotation and expansion of the loops is able to explain these characteristic shapes.Comment: 59 pages, accepted to PAS

    Temperature and Density in the Foot Points of the Molecular Loops in the Galactic Center; Analysis of Multi-J Transitions of 12CO(J=1-0, 3-2, 4-3, 7-6), 13CO(J=1-0) and C18O(J=1-0)

    Full text link
    Fukui et al. (2006) discovered two molecular loops in the Galactic center and argued that the foot points of the molecular loops, two bright spots at both loops ends, represent the gas accumulated by the falling motion along the loops, subsequent to magnetic flotation by the Parker instability. We have carried out sensitive CO observations of the foot points toward l=356 deg at a few pc resolution in the six rotational transitions of CO; 12CO(J=1-0, 3-2, 4-3, 7-6), 13CO(J=1-0) and C18O(J=1-0). The high resolution image of 12CO (J=3-2) has revealed the detailed distribution of the high excitation gas including U shapes, the outer boundary of which shows sharp intensity jumps accompanying strong velocity gradients. An analysis of the multi-J CO transitions shows that the temperature is in a range from 30-100 K and density is around 10^3-10^4 cm^-3, confirming that the foot points have high temperature and density although there is no prominent radiative heating source such as high mass stars in or around the loops. We argue that the high temperature is likely due to the shock heating under C-shock condition caused by the magnetic flotation. We made a comparison of the gas distribution with theoretical numerical simulations and note that the U shape is consistent with numerical simulations. We also find that the region of highest temperature of ~100 K or higher inside the U shape corresponds to the spur having an upward flow, additionally heated up either by magnetic reconnection or bouncing in the interaction with the narrow neck at the bottom of the U shape. We note these new findings further reinforce the magnetic floatation interpretation.Comment: 40 pages, 23 figures, accepted by PASJ on Vol.62 No.

    THE NEUTRAL INTERSTELLAR GAS TOWARD SNR W44: CANDIDATES FOR TARGET PROTONS IN HADRONIC γ-RAY PRODUCTION IN A MIDDLE-AGED SUPERNOVA REMNANT

    Get PDF
    We present an analysis of the interstellar medium (ISM) toward the γ-ray supernova remnant (SNR) W44. We used NANTEN2 12CO(J = 2-1) and 12CO(J = 1-0) data and Arecibo H I data in order to identify the molecular and atomic gas in the SNR. We confirmed that the molecular gas is located in the SNR shell with a primary peak toward the eastern edge of the shell. We newly identified high-excitation molecular gas along the eastern shell of the SNR in addition to the high-excitation broad gas previously observed inside the shell; the line intensity ratio between the 12CO(J = 2-1) and 12CO(J = 1-0) transitions in these regions is greater than ~1.0, suggesting a kinetic temperature of 30 K or higher, which is most likely due to heating by shock interaction. By comparing the ISM with γ-rays, we find that target protons of hadronic origin are dominated by molecular protons of average density around 200 cm–3, where the possible contribution of atomic protons is 10% or less. This average density is consistent with the recent discovery of the low-energy γ-rays suppressed in 50 MeV-10 GeV as observed with AGILE and Fermi. The γ-ray spectrum differs from place to place in the SNR, suggesting that the cosmic-ray (CR) proton spectrum significantly changes within the middle-aged SNR perhaps due to the energy-dependent escape of CR protons from the acceleration site. We finally derive a total CR proton energy of ~1049 erg, consistent with the SN origin of the majority of the CRs in the Galaxy

    Genome-Wide Target Analyses of Otx2 Homeoprotein in Postnatal Cortex

    No full text
    Juvenile brain has a unique time window, or critical period, in which neuronal circuits are remodeled by experience. Mounting evidence indicates the importance of neuronal circuit rewiring in various neurodevelopmental disorders of human cognition. We previously showed that Otx2 homeoprotein, essential for brain formation, is recaptured during postnatal maturation of parvalbumin-positive interneurons (PV cells) to activate the critical period in mouse visual cortex. Cortical Otx2 is the only interneuron-enriched transcription factor known to regulate the critical period, but its downstream targets remain unknown. Here, we used ChIP-seq (chromatin immunoprecipitation sequencing) to identify genome-wide binding sites of Otx2 in juvenile mouse cortex, and interneuron-specific RNA-seq to explore the Otx2-dependent transcriptome. Otx2-bound genes were associated with human diseases such as schizophrenia as well as critical periods. Of these genes, expression of neuronal factors involved in transcription, signal transduction and mitochondrial function was moderately and broadly affected in Otx2-deficient interneurons. In contrast to reported binding sites in the embryo, genes encoding potassium ion transporters such as KV3.1 had juvenile cortex-specific binding sites, suggesting that Otx2 is involved in regulating fast-spiking properties during PV cell maturation. Moreover, transcripts of oxidative resistance-1 (Oxr1), whose promoter has Otx2 binding sites, were markedly downregulated in Otx2-deficient interneurons. Therefore, an important role of Otx2 may be to protect the cells from the increased oxidative stress in fast-spiking PV cells. Our results suggest that coordinated expression of Otx2 targets promotes PV cell maturation and maintains its function in neuronal plasticity and disease

    Computational Exploration of the Mechanism of the Hydrogenation Step of the Anthraquinone Process for Hydrogen Peroxide Production

    No full text
    Hydrogen peroxide is produced commercially by the sequential hydrogenation and oxidation of anthraquinone (AQ) and tetrahydroanthraquinone (THAQ). The hydrogenation of AQ and THAQ on the Pd(111) surface is investigated with periodic density functional theory (DFT) calculations in this work. Dihydrogen is preferentially adsorbed on the top of a Pd atom, and the produced hydrogen atoms are on two neighboring 3-fold hollow fcc positions. The three benzene rings of AQ are located at bridge sites on the Pd(111) surface. The two carbonyl oxygen atoms of AQ and THAQ successively abstract the surface hydrogen atoms to produce anthrahydroquinone (AHQ) and tetrahydroanthrahydroquinone (THAHQ), respectively. The formation of unwanted byproducts, anthrone (AN), tetrahydroanthrone (THAN), oxanthrone (OAN), and tetrahydro-oxanthrone (THOAN), in the hydrogenation step of the AQ process is also studied to consider the suppression of these byproducts

    A detailed study of the interstellar protons toward the TeV gamma-ray SNR RX J0852.0-4622 (G266.2-1.2, Vela Jr.) : the third case of the gamma-Ray and ISM spatial correspondence

    No full text
    We present a new analysis of the interstellar protons toward the TeV gamma-ray SNR RX J0852.0-4622 (G266.2-1.2, Vela Jr.). We used the NANTEN2 (CO)-C-12(J = 1-0) and Australia Telescope Compact Array and Parkes H I data sets in order to derive the molecular and atomic gas associated with the TeV gamma-ray shell of the SNR. We find that atomic gas over a velocity range from V-LSR =-4 to 50 km s(-1) or 60 km s(-1) is associated with the entire SNR, while molecular gas is associated with a limited portion of the SNR. The large velocity dispersion of the H I is ascribed to the expanding motion of a few H I shells overlapping toward the SNR but is not due to the Galactic rotation. The total masses of the associated H I and molecular gases are estimated to be similar to 2.5 x 10(4) M-circle dot and similar to 10(3) M-circle dot), respectively. A comparison with the High Energy Stereoscopic System TeV gamma-rays indicates that the interstellar protons have an average density around 100 cm(-3) and shows a good spatial correspondence with the TeV gamma-rays. The total cosmic-ray proton energy is estimated to be 1048 erg for the hadronic gamma-ray production, which may still be an underestimate by a factor of a few due to a small filling factor of the SNR volume by the interstellar protons. This result presents a third case, after RX J1713.7-3946 and HESS J1731-347, of the good spatial correspondence between the TeV gamma-rays and the interstellar protons, lending further support for a hadronic component in the gamma-rays from young TeV gamma-ray SNRs

    Frequent Germline and Somatic Single Nucleotide Variants in the Promoter Region of the Ribosomal RNA Gene in Japanese Lung Adenocarcinoma Patients

    No full text
    Ribosomal RNA (rRNA), the most abundant non-coding RNA species, is a major component of the ribosome. Impaired ribosome biogenesis causes the dysfunction of protein synthesis and diseases called “ribosomopathies,” including genetic disorders with cancer risk. However, the potential role of rRNA gene (rDNA) alterations in cancer is unknown. We investigated germline and somatic single-nucleotide variants (SNVs) in the rDNA promoter region (positions −248 to +100, relative to the transcription start site) in 82 lung adenocarcinomas (LUAC). Twenty-nine tumors (35.4%) carried germline SNVs, and eight tumors (9.8%) harbored somatic SNVs. Interestingly, the presence of germline SNVs between positions +1 and +100 (n = 12; 14.6%) was associated with significantly shorter recurrence-free survival (RFS) and overall survival (OS) by univariate analysis (p < 0.05, respectively), and was an independent prognostic factor for RFS and OS by multivariate analysis. LUAC cell line PC9, carrying rDNA promoter SNV at position +49, showed significantly higher ribosome biogenesis than H1650 cells without SNV. Upon nucleolar stress induced by actinomycin D, PC9 retained significantly higher ribosome biogenesis than H1650. These results highlight the possible functional role of SNVs at specific sites of the rDNA promoter region in ribosome biogenesis, the progression of LUAC, and their potential prognostic value
    corecore