106 research outputs found

    Anti-IgE Response in Human Airways: Relative Contribution of Inflammatory Mediators

    Get PDF
    Heman airway preparations at resting tone were relaxed with either the leukotriene synthesis inhibitor BAY x1005 (3 μM), chlorpheniramine (1 μM) or the thromboxane receptor antagonist BAY u3405 (0.1 μM). The response to anti-IgE (1:1000) was 58 ± 8% of acetylcholine pre-contraction (2.19 ± 0.28 g). Indomethacin (3 μM) enhanced the anti-IgE-induced contraction by 28%. The anti-IgE maximal response was not modified by either chlorpheniramine, BAY x1005 or BAY u3405. When the tissues were treated with either BAY xl005/indomethacin or BAY x1005/chlorpheniramine, the anti-IgE-induced contraction was reduced. In addition, in presence of BAY xl005/indomethacin/chlorpheniramine the response was completely blocked. These results suggest that mediatots released during anti-IgE challenge cause airway contraction which may mask the evaluation of the leukotriene component

    Bronchodilation induced by PGE2 is impaired in Group-III pulmonary hypertension

    Get PDF
    BACKGROUND AND PURPOSE: In patients with pulmonary hypertension (PH) associated with lung disease and/or hypoxia (Group III), a reduction of pulmonary vascular tone and tissue hypoxia are considered therapeutically beneficial. Prostaglandin (PG) E2 and PGI2 induce potent relaxation of human bronchi from non-PH (control) patients via EP4 and IP receptors, respectively. However, the effects of PGE2 /PGI2 and their mimetics on human bronchi from PH-patients are unknown. Our aim was to compare the relaxant effects of several PGI2 -mimetics approved for treating PH-Group I with several PGE2 -mimetics in bronchial preparations derived from PH-Group III and control patients. EXPERIMENTAL APPROACH: Using an organ bath system, the tone of bronchial muscle was investigated in tissue from either control or PH-Group III patients. Expression of prostanoid receptors were analyzed by Western blot and real-time PCR and endogenous PGE2 , PGI2 and cAMP levels were determined by ELISA. KEY RESULTS: Maximal relaxations induced by different EP4 agonists (PGE2 , L-902688, ONO-AE1-329) were significantly decreased in human bronchi from PH-patients versus controls. In contrast, the maximal relaxations produced by PGI2 -mimetics (iloprost, treprostinil, beraprost) were similar for both groups of patients. Both EP4 and IP receptor protein and mRNA expressions were significantly lower in human bronchi from PH-patients. cAMP levels significantly correlated with PGI2 but not with PGE2 levels. CONCLUSION AND IMPLICATIONS: This study shows that PGI2 -mimetics have preserved maximal bronchodilation in PH-Group III patients. The decreased bronchodilation induced by EP4 agonists suggests that restoration of EP4 expression in airways of PH-patients with respiratory diseases could bring additional therapeutic benefit

    Silver nanoparticles impair retinoic acid-inducible gene I mediated mitochondrial anti-viral immunity by blocking the autophagic flux in lung epithelial cells

    Get PDF
    Silver nanoparticles (AgNPs) are microbicidal agents which could be potentially used as alternative to antivirals to treat human infectious diseases, especially Influenza virus infection where antivirals have generally proven unsuccessful. However, concerns about the use of AgNPs on humans arise from their potential toxicity, although mechanisms are not well-understood. We show here, in the context of Influenza virus infection of lung epithelial cells, that AgNPs down-regulated Influenza induced-CCL-5 and -IFN-β release (two cytokines important in anti-viral immunity) through RIG-I inhibition, while enhancing IL-8 production, a cytokine important for mobilizing host antibacterial responses. AgNPs activity was independent of coating and was not observed with gold nanoparticles. Down-stream analysis indicated that AgNPs disorganized the mitochondrial network and prevented the anti-viral IRF-7 transcription factor influx into the nucleus. Importantly, we showed that the modulation of RIG-I-IRF-7 pathway was concomitant with inhibition of either classical or alternative autophagy (ATG-5- and Rab-9 dependent, respectively), depending on the epithelial cell type used. Altogether, this demonstration of a AgNPs-mediated functional dichotomy (down-regulation of IFN-dependent anti-viral responses and up-regulation of IL-8 -dependent antibacterial responses) may have practical implications for their use in the clinic

    Prostanoid EP₂ Receptors Are Up-Regulated in Human Pulmonary Arterial Hypertension: A Key Anti-Proliferative Target for Treprostinil in Smooth Muscle Cells

    Get PDF
    Prostacyclins are extensively used to treat pulmonary arterial hypertension (PAH), a life-threatening disease involving the progressive thickening of small pulmonary arteries. Although these agents are considered to act therapeutically via the prostanoid IP receptor, treprostinil is the only prostacyclin mimetic that potently binds to the prostanoid EP₂ receptor, the role of which is unknown in PAH. We hypothesised that EP₂ receptors contribute to the anti-proliferative effects of treprostinil in human pulmonary arterial smooth muscle cells (PASMCs), contrasting with selexipag, a non-prostanoid selective IP agonist. Human PASMCs from PAH patients were used to assess prostanoid receptor expression, cell proliferation, and cyclic adenosine monophosphate (cAMP) levels following the addition of agonists, antagonists or EP₂ receptor small interfering RNAs (siRNAs). Immunohistochemical staining was performed in lung sections from control and PAH patients. We demonstrate using selective IP (RO1138452) and EP₂ (PF-04418948) antagonists that the anti-proliferative actions of treprostinil depend largely on EP₂ receptors rather than IP receptors, unlike MRE-269 (selexipag-active metabolite). Likewise, EP₂ receptor knockdown selectively reduced the functional responses to treprostinil but not MRE-269. Furthermore, EP₂ receptor levels were enhanced in human PASMCs and in lung sections from PAH patients compared to controls. Thus, EP₂ receptors represent a novel therapeutic target for treprostinil, highlighting key pharmacological differences between prostacyclin mimetics used in PAH

    Computation of protein geometry and its applications: Packing and function prediction

    Full text link
    This chapter discusses geometric models of biomolecules and geometric constructs, including the union of ball model, the weigthed Voronoi diagram, the weighted Delaunay triangulation, and the alpha shapes. These geometric constructs enable fast and analytical computaton of shapes of biomoleculres (including features such as voids and pockets) and metric properties (such as area and volume). The algorithms of Delaunay triangulation, computation of voids and pockets, as well volume/area computation are also described. In addition, applications in packing analysis of protein structures and protein function prediction are also discussed.Comment: 32 pages, 9 figure

    Regulation of rat intrapulmonary arterial tone by arachidonic acid and prostaglandin E2 during hypoxia

    Get PDF
    Aims Arachidonic acid (AA) and its metabolites, prostaglandins (PG) are known to be involved in regulation of vascular homeostasis including vascular tone and vessel wall tension, but their potential role in Hypoxic pulmonary vasoconstriction (HPV) remains unclear. In this study, we examined the effects of AA and PGE2 on the hypoxic response in isolated rat intrapulmonary arteries (IPAs). Methods and Results We carried out the investigation on IPAs by vessel tension measurement. Isotetrandrine (20 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. Both indomethacin (100 µM) and NS398 attenuated KPSS-induced vessel contraction and phase I, phase IIb and phase IIc of HPV, implying that COX-2 plays a primary role in the hypoxic response of rat IPAs. PGE2 alone caused a significant vasoconstriction in isolated rat IPAs. This constriction is mediated by EP4. Blockage of EP4 by L-161982 (1 µM) significantly inhibited phase I, phase IIb and phase IIc of hypoxic vasoconstriction. However, AH6809 (3 µM), an antagonist of EP1, EP2, EP3 and DP1 receptors, exerted no effect on KPSS or hypoxia induced vessel contraction. Increase of cellular cAMP by forskolin could significantly reduce KPSS-induced vessel contraction and abolish phase I, phase II b and phase II c of HPV. Conclusion Our results demonstrated a vasoconstrictive effect of PGE2 on rat IPAs and this effect is via activation of EP4. Furthermore, our results suggest that intracellular cAMP plays dual roles in regulation of vascular tone, depending on the spatial distribution of cAMP and its coupling with EP receptor and Ca2+ channels

    Residential exposure to plasticizers and its possible role in the pathogenesis of asthma.

    Get PDF
    The plasticizer di(2-ethylhexyl) phthalate (DEHP) is widely used in building materials. DEHP is identified as the major plasticizer exposure in dwellings. We provide evidence that inhalation exposure to DEHP as aerosols adsorbed to particulate matter is as important, or more important, than vapor phase exposure. The particulate inhalation exposure to DEHP is considered to be significant due to its low clearance and extensive penetration into the pulmonary region. DEHP is capable of creating high local concentrations in the airways at the deposition site with subsequent local effects. The proposed mechanism of effect states that mono(2-ethylhexyl) phthalate (MEHP), the primary hydrolysis product of DEHP, mimics the inducing prostaglandins (PG) PGD(2), 9alpha,11betaPGF2, and PGF2alpha, and thromboxanes in the lungs, thereby increasing the risk of inducing inflammation in the airways, which is a characteristic of asthma

    Cardiovascular Agents Affect the Tone of Pulmonary Arteries and Veins in Precision-Cut Lung Slices

    Get PDF
    Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins.Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins.Pulmonary veins responded stronger than arteries to α(1)-agonists (contraction) and β(2)-agonists (relaxation). Notably, inhibition of β(2)-adrenoceptors unmasked the α(1)-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V(1a) and AT(1) receptors, respectively, without affecting pulmonary arteries.Vasopressin and (nor)epinephrine in combination with β(2)-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT(1) receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α(1)-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not

    The pharmacological effect of BGC20-1531, a novel prostanoid EP4 receptor antagonist, in the Prostaglandin E2 human model of headache

    Get PDF
    Using a human Prostaglandin E2 (PGE2) model of headache, we examined whether a novel potent and selective EP4 receptor antagonist, BGC20-1531, may prevent headache and dilatation of the middle cerebral (MCA) and superficial temporal artery (STA). In a three-way cross-over trial, eight healthy volunteers were randomly allocated to receive 200 and 400 mg BGC20-1531 and placebo, followed by a 25-min infusion of PGE2. We recorded headache intensity on a verbal rating scale, MCA blood flow velocity and STA diameter. There was no difference in headache response or prevention of the dilation of the MCA or the STA (P > 0.05) with either dose of BGC20-1531 relative to placebo, although putative therapeutic exposures were not reached in all volunteers. In conclusion, these data suggest that the other EP receptors may be involved in PGE2 induced headache and dilatation in normal subjects
    corecore