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Abstract: Prostacyclins are extensively used to treat pulmonary arterial hypertension (PAH), a life-

threatening disease involving the progressive thickening of small pulmonary arteries. Although 

these agents are considered to act therapeutically via the prostanoid IP receptor, treprostinil is the 

only prostacyclin mimetic that potently binds to the prostanoid EP2 receptor, the role of which is 

unknown in PAH. We hypothesised that EP2 receptors contribute to the anti-proliferative effects of 

treprostinil in human pulmonary arterial smooth muscle cells (PASMCs), contrasting with 

selexipag, a non-prostanoid selective IP agonist. Human PASMCs from PAH patients were used to 

assess prostanoid receptor expression, cell proliferation, and cyclic adenosine monophosphate 

(cAMP) levels following the addition of agonists, antagonists or EP2 receptor small interfering RNAs 

(siRNAs). Immunohistochemical staining was performed in lung sections from control and PAH 

patients. We demonstrate using selective IP (RO1138452) and EP2 (PF-04418948) antagonists that the 

anti-proliferative actions of treprostinil depend largely on EP2 receptors rather than IP receptors, 

unlike MRE-269 (selexipag-active metabolite). Likewise, EP2 receptor knockdown selectively 

reduced the functional responses to treprostinil but not MRE-269. Furthermore, EP2 receptor levels 

were enhanced in human PASMCs and in lung sections from PAH patients compared to controls. 

Thus, EP2 receptors represent a novel therapeutic target for treprostinil, highlighting key 

pharmacological differences between prostacyclin mimetics used in PAH. 

Keywords: prostacyclin; prostaglandin; EP2 receptor; human; treprostinil; selexipag; pulmonary 

arterial smooth muscle cell proliferation; IP receptor agonists; pulmonary hypertension 
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1. Introduction 

Pulmonary arterial hypertension (PAH) is a highly proliferative, vascular remodelling disease 

leading to right heart failure and death, with endothelin-1 (ET-1) implicated as an important mediator 

of vasoconstriction and remodelling in this disease [1,2]. Prostacyclin and its chemically stable 

analogues, iloprost and treprostinil, are used extensively in the treatment of PAH [2–4]. Early work 

on prostacyclin or its analogues (the prostacyclins) considered that activity at the prostanoid IP 

receptor significantly contributed to their pharmacological properties in humans [5], including potent 

vasodilator effects in the pulmonary vasculature [2,6,7] and anti-proliferative effects in distal 

pulmonary arterial smooth muscle cells (PASMCs) derived from normal lungs [8,9]. Based on this 

concept, selexipag, a novel non-prostanoid and highly selective IP receptor agonist was developed 

for PAH [10,11] and is now a clinically approved treatment [12]. 

Prostacyclins have diverse effects on prostanoid IP, EP1, EP2, EP3 or DP1 receptors at clinical 

concentrations [5]. Radioligand binding assays for human prostanoid receptors showed that 

treprostinil had high affinity towards EP2, DP1 and IP receptors [13], and this was more recently 

independently confirmed in several isolated smooth muscle preparations [14]. Furthermore, 

compared to other prostacyclin analogues, enhanced and more prolonged cyclic adenosine 

monophosphate (cAMP) generation was previously reported for treprostinil in both human PASMCs 

(HPASMCs) and mouse alveolar macrophages, strongly suggesting signalling through additional Gs-

coupled receptors [9,15]. In macrophages this was largely accounted for by the activation of EP2 

receptors [15]. That other receptors might contribute to the action of treprostinil in the pulmonary 

vasculature, is supported by our previous work where IP receptor-independent mechanisms largely 

mediated the anti-proliferative effects of treprostinil in HPASMCs derived from PAH patients [16]; 

this occurred against a backdrop of decreased IP receptor expression. 

The role of EP2 receptors in regulating pulmonary smooth muscle proliferation has yet to be 

established. However, these receptors underlie the anti-proliferative effects of prostaglandin E2 in 

airway smooth muscle cells [17], they are upregulated by smooth muscle growth factors known to be 

increased in PAH [18–20] and are protective against neointimal hyperplasia caused by vascular injury 

[20]. By contrast, there are no reports so far showing DP1 receptors significantly regulating smooth 

muscle proliferation. 

Here, we hypothesize that treprostinil exerts strong anti-proliferative actions through the 

activation of the EP2 receptor in HPASMCs derived from patients with PAH, which becomes the 

dominant pharmacological target either because of the enhanced expression of EP2 receptors and/or 

the down-regulation of IP receptors. Moreover, treprostinil has a 10 fold higher affinity at the EP2 

receptor compared to the IP receptor [13]. In the present work, we defined the role of IP and EP2 

prostanoid receptors using highly selective prostanoid receptor agonists, antagonists, and gene-

silencing techniques using small interfering RNAs (siRNAs) to ‘knockdown’ the EP2 receptor. The 

effects of treprostinil were directly compared to the active selexipag metabolite, MRE-269 (ACT-

333679), a specific agonist at the IP receptor [10], whose activity in HPASMCs from PAH patients has 

not been examined previously. EP2 receptor expression was assessed in human pulmonary vascular 

tissue from normal and PAH patients using quantitative-PCR (qPCR) and immunohistochemical 

techniques. This work now demonstrates that the selexipag metabolite acts exclusively via the IP 

receptor to modulate the proliferation of smooth muscle cells. By contrast, this study identifies for 

the first time, that EP2 receptors are upregulated in PAH and are important negative modulators of 

pulmonary artery smooth muscle proliferation, thus representing a previously unrecognized 

therapeutic target for treprostinil. 

2. Results 

2.1. Patient Characteristics 

Patients were classified according to updated clinical guidelines for pulmonary hypertension 

[21] and had a mean age of 15.1 ± 6.2 year (yr), a mean pulmonary artery pressure of 72 ± 5.2 mmHg 

(n = 9) and a pulmonary vascular resistance index (PVRI) of ≥19 Wood units.m2 (Table S1). Samples 
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were obtained from patients (n = 10) diagnosed as having idiopathic PAH (IPAH) who went on to 

have a transplant after failed treatment or who had died. However, on clinical examination at the 

time of transplant, 6 patients had other complications confirmed, including 5 patients with PAH 

associated with minor heart defects. All patients were treated with bosentan and a prostacyclin, with 

5 also treated with sildenafil (mean duration of 2.7, 2.8 and 3.5 yr, respectively). Gross pathological 

changes in the lungs can be seen in Figure S1. Histological staining with hematoxylin and eosin (H & 

E; left panel), as well as with Van Gieson (EVG; right panel), showed gross structural changes in lung 

sections from patients with PAH. Small arteries were more muscularised compared to sections from 

normal lungs, and an increase in collagen deposition was observed (Figure S1). Both haemodynamic 

and histological changes reported in the patient group of the study are consistent with a clinical 

classification of group 1 pulmonary arterial hypertension with end-stage disease. 

2.2. Anti-Proliferative Activity of Treprostinil and MRE-269 

Human PASMCs derived from patients with PAH showed classic ‘hill and valley’ morphology 

(Figure 1A). A high percentage of cells (close to 100%) stained positive for both the smooth muscle 

markers, α-smooth muscle actin (α-SMA) and SM-22 (Figures 1A and S2), but not the endothelial cell 

markers, cluster of differentiation 31 (CD-31) or von Willebrand factor (vWF; Figure S2), confirming 

their likely origin as smooth muscle cells. We have previously shown via Western blotting that these 

cultured HPASMCs also express smooth muscle myosin heavy chain and caldesmon, markers not 

routinely expressed in either fibroblasts or myofibroblasts [16]. However, we cannot exclude the 

possibility that our cell population might contain myofibroblasts, which stain for α-SMA (Figure S2). 

 

Figure 1. Characterization of human pulmonary arterial smooth muscle cells (HPASMCs) derived from 

PAH patients: comparison of the anti-proliferative effects of treprostinil and MRE-269. (A) Phase contrast 

image of HPASMCs grown to confluence and immunofluorescence staining using antibodies directed 

against smooth muscle markers, α-SMA (red) and SM-22 (green). In both cases, the nucleus is stained blue 

with 4’,6-diamidino-2-phenylindole (DAPI). (B) Concentration-response (0.001–10,000 nM) of treprostinil 

and MRE-269 on cell proliferation, assessed after 4 days of drug treatment using an MTS assay kit. Data 

are expressed as % cell proliferation relative to the growth response induced by 9% fetal bovine serum 

(FBS) and 3 nM endothelin -1 (ET-1) alone (100%). Significance was tested using two-way ANOVA with 

Bonferroni post-hoc correction. * p < 0.05 when compared to treprostinil. Data-sets were acquired using 

cells from the same patients (10–11 independent experiments, from 5 patient isolates; passage 3–7). 

To assess the concentration-dependent effects of putative anti-proliferative agents, HPASMCs 

were incubated in smooth muscle basal medium (SMBM) containing 9% fetal bovine serum (FBS) 

plus 3 nM ET-1 for 4 days. This combination of ET-1 and FBS was used to provide a synergistic 

stimulus for evoking the proliferation of HPASMCs, as described by others [22]. In cells incubated 

with treprostinil, a concentration-dependent reduction in proliferation (as measured by MTS assay) 

was observed over a wide concentration range (0.001–10,000 nM; Figure 1B). Significant (p < 0.05) 

anti-proliferative actions were seen at subnanomolar concentrations (0.1 nM) of treprostinil. The IC50 
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for treprostinil was 11 nM, with an inhibition of cell growth of 73% occurring at 10,000 nM. The non-

prostanoid IP receptor agonist, MRE-269 [10], also caused a concentration-dependent reduction in 

HPASMC proliferation (Figure 1B). Significant (p < 0.05, n = 10) anti-proliferative actions of MRE-269 

were seen at 1 nM and higher, although the degree of inhibition between 10 and 10,000 nM was 

significantly less than with treprostinil, being only 48% at 10,000 nM (Figure 1B). The estimated IC50 

for this anti-proliferative action of MRE-269 was 4 nM. Thus, despite MRE-269 having a slightly 

higher binding affinity (Ki 20 nM) than treprostinil (Ki 32 nM) at the human IP receptor [10,13], the 

threshold for this drug to significantly inhibit proliferation occurred at a 10 fold higher concentration 

than seen with treprostinil. The greater anti-proliferative response elicited by treprostinil compared 

to MRE-269 may suggest that treprostinil, as well as activating the IP receptor, signals through an 

additional target to inhibit cell growth as previously reported in HPASMCs from PAH patients [16].  

2.3. Role of IP Receptors 

To evaluate the role of IP receptors in the anti-proliferative activity of MRE-269 and treprostinil, 

HPASMCs were concurrently incubated with the selective IP receptor antagonist RO1138452 

(CAY10441; 1 μM). This concentration of RO1138452 was previously shown to antagonize IP 

receptors in a number of systems [7,16,23]. The dose-dependent, anti-proliferative response at all 

concentrations of MRE-269 (0.001–10,000 nM) was abolished in the presence of RO1138452 (Figure 

2A). A more complex pattern was observed when treprostinil was incubated concurrently with 

RO1138452. At very low treprostinil concentrations (≤0.1 nM), the responses were abolished by 

RO1138452 (1 µM), whereas above these concentrations there was some or no reduction in anti-

proliferative activity (Figure 2B). Overall, RO1138452 (1 µM) did not significantly shift (p = 0.573 for 

interaction) the concentration-response curve to treprostinil, nor did it affect the value for IMax (Table 

S2). Taken together, these data imply that prostanoid IP receptors are entirely responsible for the anti-

proliferative properties of the active selexipag metabolite, MRE-269. This contrasts with treprostinil, 

where non-IP receptor targets appear to play a major role in the action of treprostinil in HPASMCs 

from PAH patients over a broad range (1–10,000 nM) of the drug. The latter observation supports our 

previously published data, where RO1138452 failed to inhibit the anti-proliferative effects of 

treprostinil in HPASMCs from PAH patients, though, in that study, only treprostinil concentrations 

outside the therapeutic range (100 nM or above) were assessed [16]. Likewise, the adenylate cyclase 

inhibitor, 2′,5′-dideoxyadenosine failed to inhibit the effects of treprostinil on cell growth in PAH 

cells, whereas it did in normal HPASMCs [9,16], as did the IP receptor antagonist, RO1138452 [16]. 

This suggests a switch in the mechanism of action of treprostinil from one that involves the IP 

receptor and cAMP in normal cells to one that largely does not in diseased cells. 

2.4. Role of EP2 Receptors 

Involvement of EP2 receptors in modulating growth responses in HPASMCs from PAH patients 

was evaluated by two approaches. Firstly, the highly selective EP2 receptor agonist, butaprost [24], 

caused a concentration-dependent (0.001–10,000 nM) reduction in cell proliferation, with significant 

(p < 0.05) effects seen at concentrations of 1 nM and higher (Figure 2C). The IC50 of butaprost was 5 

nM (Table S2), and the degree of inhibition at 10,000 nM was 58%. Secondly, PF-04418948, a potent 

(IC50 of 16 nM against recombinant EP2 receptors) and highly selective (>2000-fold) antagonist at the 

human prostanoid EP2 receptor [25], abolished the anti-proliferative effects of butaprost at all 

concentrations evaluated (Figure 2C). These results are thus consistent with the presence of functional 

EP2 receptors in our smooth muscle cells isolated from PAH patients. 

Likewise, PF-04418948 (1 µM) significantly reduced the anti-proliferative effects of treprostinil 

(p < 0.05), causing a significant rightward shift of the concentration-response curve by 2–3 orders of 

magnitude (Figure 2D). Thus, PF-04418948 (1 µM) not only significantly increased the IC50 of 

treprostinil by 67-fold (from 11 to 741 nM), as calculated from the data in Table S2, but 100 nM now 

became the lowest treprostinil concentration to cause the significant inhibition of cell proliferation. 

These data, therefore support the notion that EP2 receptors are being activated by treprostinil. It is 

relevant to note that plasma concentrations of treprostinil after subcutaneous or intravenous infusion 
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in clinical studies are in the range of 2.5–25 nM [26], suggesting the EP2 receptor-based anti-

proliferative actions of this drug are likely to be activated at therapeutic concentrations of treprostinil. 

 

Figure 2. Differential role of prostanoid IP and EP2 receptors in mediating the anti-proliferative effects 

of treprostinil and MRE-269 in PAH cells. The anti-proliferative effects of MRE-269, treprostinil and 

butaprost in the absence and presence of the IP receptor antagonist, RO1138452 (A,B), the EP2 receptor 

antagonist, PF-04418948 (C,D) or in combination (D). Human PASMCs were left untreated (Control) 

or treated with 10 nM (log −8) and 1000 nM (log −6) of either treprostinil (E) or MRE-269 (F) in the 

absence or presence of the IP receptor antagonist, RO1138452 (RO11; 1 µM), the EP2 receptor 

antagonist, PF-04418948 (PF-04; 1 µM) or a combination (BOTH). Antagonists (1 µM) were added 30 

min prior to the receptor agonists. Cell proliferation was assessed in HPASMCs from PAH patients 

after 4 days of drug treatment using an MTS assay kit (A–D) or by cell counting (E,F). Data expressed 

as % cell proliferation relative to the growth response. Significance was tested using one or two-way 

ANOVA with Bonferroni post-hoc correction (A–D) or Newman–Keuls multiple comparison test 

(E,F). * p < 0.05 when compared to receptor agonist alone (A–D), control (E,F) or as indicated. Each 

comparative data-set was acquired using cells from the same patients (4–6 isolates, passage 3–9). 
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To evaluate interactions between EP2 and IP receptors, PF-04418948 (1 µM) was combined with 

RO1138452 (1 µM). With this combination of antagonists, there was a significant (p < 0.05, two-way 

ANOVA) further shift in the concentration-response curve for treprostinil (Figure 2D), with an IC50 

of 3162 nM (Table S2). Similar qualitative results to those above were obtained when cell proliferation 

was assessed by cell counting. Thus, PF-04418948 (1 µM) significantly reversed the anti-proliferative 

effects of treprostinil at 10 and 1000 nM, but not the anti-proliferative effects of MRE-269 (Figure 2E,F). 

On the other hand, RO1138452 (1 µM) fully reversed MRE-269 responses and further inhibited treprostinil 

responses (at 10 nM but not 100 nM) when combined with PF-04418948 (Figure 2E,F). 

Thus, our results suggest that both EP2 and IP receptors are activated by a broad range of 

treprostinil concentrations, and that receptor-driven, anti-proliferative effects of IP activation are 

more fully unmasked under conditions of marked EP2 antagonism. In contrast, the anti-proliferative 

actions of MRE-269 in HPASMCs from PAH patients appear to be driven solely by the IP receptor. 

2.5. Knockdown of the EP2 Receptor with siRNAs 

In HPASMCs from PAH patients, EP2 receptor mRNA expression was reduced by 90.9 ± 3.2% (n = 3) 

and protein levels were reduced by 76.3 ± 7.9% (n = 5; p < 0.05) following 4 days of treatment with EP2 

receptor siRNAs (30 pM) compared with scrambled siRNA (Figure 3A,B). The lack of significant effects 

of the scrambled siRNA (negative control) is indicative of sequence-specific silencing under our 

experimental conditions rather than from the non-specific effects of RNA interference per sey. 

 

Figure 3. The consequence of EP2 gene silencing on cAMP levels in HPASMCs derived from PAH 

patients. Cells were starved for 48 hr, transfected with 30 pM of EP2 receptor small interfering RNA 

(siRNA) or its scrambled (scram) negative control and then grown for 4 days. EP2 receptor expression 

was assessed by RT-qPCR (A) and by Western blotting (B), with levels normalised to β-actin or HSP90, 

respectively, for quantification of siRNA effects by imageJ. Intracellular cAMP was measured in 

growing cells after a 30 min application of butaprost (C) or treprostinil (D) in the absence (control) or 

presence of either scrambled (scram) siRNA, siRNA against the EP2 receptor or PF-04418948 (1 µM). 

Basal levels of cAMP were also measured in the presence of siRNA constructs without agonist. ns = 

non-significant. * p < 0.05 compared to either scram siRNA or as indicated; one-way ANOVA with 

Newman–Keuls multiple comparison test (n = 3–8 independent experiments; passage 2–10). 
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Moreover, cAMP levels elevated by butaprost (1000 nM) were almost fully inhibited by EP2 

siRNAs or 1 µM PF04418948 (p < 0.05; Figure 3C), consistent with it being a highly selective EP2 

agonist in radioligand binding studies [24], and as also proposed from gene deletion studies in mice 

[27]. The stimulation of cAMP levels by treprostinil (1000 nM) was, however, only partially inhibited 

by EP2 receptor siRNAs (Figure 3D). It should be noted that treprostinil produced roughly 3.5 times 

more cAMP than a similar concentration of butaprost. The most logical explanation is that treprostinil 

activates both IP and EP2 receptors but that the former receptor is more efficiently coupled to cAMP 

generation in HPASMCs. Indeed, the EP2 siRNA reduced cAMP levels roughly by the same amount 

as that elevated by butaprost. This concurs with previously reported data concluding that the major 

stimulus for cAMP production induced by treprostinil comes via the IP receptor [16]. 

In cell counting experiments, the anti-proliferative effects of 10 and 1000 nM treprostinil on 

HPASMCs were significantly reduced (p < 0.05, n = 4) by EP2 receptor siRNAs, whereas MRE-269 

effects were not (Figure 4A,B). Such observations support the proliferation experiments using 

selective pharmacological antagonists, and again highlights the key pharmacological differences 

between these two prostacyclin mimetics, with different prostanoid receptors playing a major role in 

mediating the anti-proliferative effects of either treprostinil or MRE-269. 

 

Figure 4. Knockdown of EP2 receptors with siRNAs has a differential effect on the anti-proliferative 

actions of treprostinil and MRE-269 as assessed by cell counting. Distal HPASMCs from PAH patients 

were growth-arrested for 48 hr. Cells were then grown and either left untreated (Control), or treated 

with 10 nM (log −8) and 1000 nM (log −6) of either treprostinil (A) or MRE-269 (B) with or without 

EP2 receptor siRNAs. After 4 days, cells were counted and the data expressed as % cell proliferation 

relative to growth response induced by 9% FBS and 3nM ET-1 (100%). Data are shown as mean ± 

S.E.M. (n = 4; passage number 6–9). * p < 0.05 when compared to control or as shown (1 way ANOVA 

with Newman–Keuls multiple comparison test). 

2.6. Prostanoid Receptor Expression in Cultured HPASMCs and Patient Lung Sections 

Real-time quantitative PCR (RT-qPCR) was used to determine the relative expression of prostanoid 

receptor mRNA in growing (non-synchronised) HPASMCs derived from normal and PAH patients 

(Figure 5A). In normal cells, IP, EP1, EP2, and EP4 receptors were moderately expressed and to a similar 

level. In PAH cells, the ratio of EP2/IP expression increased from 1.4 (normal) to 115 (p < 0.05, unpaired t-

test) due to a fall in IP receptor expression and a concomitant rise in EP2 levels (p < 0.05). EP4 levels also 

rose 6-fold in the PAH cells, while EP1 levels remained unchanged, though the expression of both was 

significantly less (p < 0.05, one way ANOVA) compared to EP2, being 5- and 11-fold lower, respectively. 

EP3 receptors were moderately to weakly expressed, while DP1 receptors were very weakly expressed, 

often not detectable in samples. In Western blotting experiments, IP receptor protein levels were reduced 

while EP2 receptor protein levels were higher (p < 0.05; when comparing normal and PAH samples, Figure 

5B,C). Furthermore, in pulmonary arteries isolated from patients with group 3 pulmonary hypertension 

(PH), the ratio of EP2/IP receptor expression was elevated ( p < 0.05) compared to the controls (Figure 5D). 
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Figure 5. Expression of prostanoid IP and EP2 receptors, as determined by RT-qPCR and Western 

blotting in cultured HPASMCs and pulmonary artery from control and pulmonary hypertensive 

patients. (A) Messenger RNA was extracted from growing HPASMCs isolated from control and PAH 

patients and converted to cDNA. The data were normalised to the housekeeping gene, β-actin and 

relative gene expression determined using the 2−ΔΔCt method. * p < 0.05, 2-way ANOVA with 

Bonferroni correction (3 samples per cell isolate from n = 4 patients; passage 2–9). (B) Protein levels of 

the IP receptor, the EP2 receptor and β-actin were visualised by Western blotting. (C) Band density 

was analysed by ImageJ and the densitometry data were normalised to the housekeeping gene, β-

actin. * p < 0.05, 2-way ANOVA, with Holm–Sidak’s correction (n = 4–6 patient samples, passage 5–9). 

(D) Relative EP2 to IP receptor mRNA expression in human pulmonary arteries isolated from controls 

and group 3 pulmonary hypertensive patients. * p < 0.05, unpaired t-test (n = 4 patient arteries).  

The EP2 receptor expression was examined in lung arterial sections from control and PAH 

patients (Figure 6). EP2 receptors were visibly expressed in the endothelium of normal distal (small 

muscular terminal bronchiolar and intra-acinar) arteries as observed by co-localisation of the 

endothelial marker, CD-31, whereas in the medial layer staining was more discrete and punctate 

(Figure 6A). EP2 receptor staining was also apparent in cells contained within the adventitia, where 

-smooth muscle actin (-SMA) staining was absent (Figure 6A). In the PAH sections, EP2 receptor 

staining was increased in the medial and adventitial layer (left panels) and appeared stronger in and 

around the plexiform lesion (Figure 6B). The quantification of staining in small arteries (excluding 

plexiform lesions) showed differences between normal and PAH sections, with increases in EP2 and 

-SMA pixel area counts but with little or no change in CD-31 observed in PAH sections (Figure 6C). 

The area of EP2 staining coinciding with -SMA and CD-31 staining (shown as a ratio) was 

significantly increased (p < 0.05) in PAH arteries (Figure 6D). In proximal (larger muscular pre-acinar) 

pulmonary arteries, EP2 staining was weak in the normal artery and largely confined to the medial 

layer (Figure S3A). In PAH tissue, EP2 receptor staining was substantially increased in the adventitial 

layer, with some increased staining in the medial layer (Figure S3B), though in contrast to small 

arteries, this was not significantly increased relative to α-SMA staining (Figure S3C). We conclude 
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that the EP2 receptor is robustly expressed in pulmonary artery cells and tissue from patients with 

either group 1 or group 3 pulmonary hypertension, contrasting with the IP receptor, which is 

downregulated, as previously reported in PAH [16,28]. Likewise, in experimental PAH, 

downregulation of the IP receptor in distal arteries has been reported while EP2 receptor expression 

remained unchanged [28], suggesting that pulmonary disease itself may negatively impact on the IP 

receptor expression.  

 

Figure 6. EP2 receptor expression increases in distal human pulmonary arteries from PAH patients. 

Representative immunohistochemical staining in serial sections of a pulmonary artery from a control 

(A) and a PAH patient (B) showing the prostanoid EP2 receptor (EP2), the smooth muscle marker, the 

α-smooth muscle actin (-SMA) and the endothelial cell marker, CD-31. Staining was visualised by 

diaminobenzidine (brown) in sections counterstained with haematoxylin (blue) and quantified using 

ImageJ. Grey images represent the digitisation of staining in arterial sections, where adventitial 

staining has been excluded to focus on the expression in muscle and the endothelium. Bars are 100 

µm and is the same for each section. The data are expressed as the pixel area of the respective staining 

for CD-31, α-SMA, and EP2 receptor (C) or as the ratio of EP2/α-SMA+CD31 area staining (D). 

Excluded from the analysis of data presented in parts (C) and (D) was staining in plexiform lesions. * 

p < 0.05 unpaired t-test (n = 20–23 sections from 7 controls and 8 PAH patient samples). 

3. Discussion 

The current studies have now identified a key role of prostanoid EP2 receptors in the regulation 

of human pulmonary arterial smooth muscle proliferation. Following the identification of treprostinil 

as a potent activator of prostanoid EP2 receptors [13], we now demonstrate for the first time using the 

EP2 receptor antagonist, PF-04418948 [25], as well as EP2 receptor siRNAs, that the anti-proliferative 

effect of treprostinil at therapeutic doses appears largely dependent on activation of the EP2 receptor 
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in HPASMCs from PAH patients. We also now demonstrate that the non-prostanoid IP receptor 

agonist MRE-269 has anti-proliferative activity, though unlike treprostinil, its activity is abolished by 

the highly selective IP receptor antagonist, RO1138452 [16] and is not affected by either PF-04418948 

or EP2 siRNAs. This implies a predominant or sole role for the IP receptor in the anti-proliferative 

actions of MRE-269 in HPASMCs from PAH patients, and by extrapolation, of its parent molecule 

selexipag. 

The earlier findings using RO1138452 to antagonise IP receptors [16] have now also been 

extended to explore a more extensive range of treprostinil concentrations (1 pM to 10 µM). This new 

work in HPASMCs from PAH patients demonstrates that when EP2 receptors are inhibited with PF-

04418948, RO1138452 causes a significant rightward shift of the concentration-response curve to 

treprostinil. This suggests both EP2 and IP are activated by a broad range of treprostinil 

concentrations and that the receptor-driven anti-proliferative effects of IP activation are more fully 

unmasked under conditions of substantial EP2 antagonism. However, RO1138452 generally failed to 

substantially antagonise responses at higher concentrations of treprostinil (10 nM or greater), further 

suggesting that non-IP receptor targets contribute. This contrasts with studies in normal human 

PASMCs and in normal human proximal pulmonary arteries, where the anti-proliferative and 

vasorelaxation responses to treprostinil were abolished by RO1138452, consistent with a major role 

of the IP receptor [7,16]. The extent to which EP2 receptors are functionally active in normal distal 

pulmonary arteries and cultured PASMCs is unknown and should in the future be investigated. 

To confirm the presence of functional EP2 receptors in our PAH cells, we used butaprost, a 

selective EP2 receptor agonist, which has little to no activity at the human IP receptor (Ki ~ 100 µM) 

or any other prostanoid receptor [24] and fails to elicit an anti-proliferative response in EP2 receptor 

null-mice [20], or as in this study, to significantly elevate cAMP after treatment with EP2 siRNAs. The 

threshold to significantly inhibit proliferation was 1 nM, similar to that previously reported for the 

inhibition of proliferation in murine aortic cells [20]. Consistent with the specificity of butaprost, PF-

04418948 abolished its anti-proliferative effects over the entire concentration range and inhibited the 

anti-proliferative activity of treprostinil, substantially shifting the concentration-response curve over 

the entire range. Likewise, EP2 receptor siRNAs substantially reversed the treprostinil effects on cell 

growth, clearly demonstrating a predominant contribution of EP2 receptors. The activation of EP2 

receptors, in addition to the IP receptor, may in part account for the higher maximal anti-proliferative 

response to treprostinil compared to that seen with the IP-selective agonist, MRE-269. Of note, the 

EP2 receptor does not undergo rapid agonist-induced desensitization in vitro [29], whereas the IP 

receptor does [5,29]. This suggests signalling via EP2 receptors may give rise to longer lasting 

beneficial effects in PAH, and may provide another option in those patients seen not to be responding 

well to selexipag and subsequently identified with low IP expression or limited functional capacity 

of this receptor. It should be noted that the anti-proliferative responses to treprostinil at higher 

concentrations (1 µM and above) were not fully inhibited in the presence of both IP and EP2 receptor 

antagonists suggesting an additional mechanism may be operating at the higher doses. This could 

involve the peroxisome proliferator-activated receptor-γ (PPARγ), which via a mechanism that 

appears independent of cAMP generation, could play a significant role in mediating the anti-

proliferative effects of treprostinil in human PASMCs isolated from PAH patients [16].  

We observed a striking difference in the pattern of prostanoid receptor mRNA expression in 

HPASMCs derived from control versus PAH patients. While prostanoid receptor mRNA was 

similarly expressed in control cells, with the exception of EP3 and DP1 which were much lower, the 

relative expression of EP2 over the IP receptor was enhanced 84-fold at the message level and 7-fold 

at the protein level in PAH cells. At this stage, it is impossible to gauge if the medication given to 

PAH patients influenced our current findings in HPASMCs and pulmonary arteries obtained from 

these patients. Nonetheless, enhanced gene expression of EP2 receptors compared to controls has 

been reported in airway smooth muscle cells [17] and also in lung fibroblasts [30] derived from 

patients with asthma or chronic obstructive pulmonary disease, respectively. Furthermore, enhanced 

EP2 receptor expression was noted during neointimal proliferation and was reported to underlie the 

increased anti-proliferative effects of PGE2 and butaprost treatment in airway smooth muscle cells 
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from asthmatics, and to be up-regulated in response to platelet-derived growth factor [17,20] and 

transforming growth factor β [19], key drivers of smooth muscle proliferation in PAH [18]. The 

opposite relationship was observed for IP receptor expression, which was markedly reduced in PAH 

HPASMCs, supporting previous observations that this receptor is down-regulated either as a 

consequence of disease or the PAH therapy [16,28]. Likewise, we found in pulmonary arteries from 

PH patients, that the rise in EP2 to IP receptor mRNA expression ratio compared to controls could 

largely be accounted for by a fall in IP receptor expression (not shown). Similarly, in a rat 

monocrotaline model of PAH, mRNA levels for IP, EP1 and EP3 were all down-regulated in distal 

PASMCs, whereas the EP2 and EP4 receptor expression was essentially unaltered [28]. Irrespective of 

IP receptor downregulation, treprostinil reversed monocrotaline-induced vascular medial thickening 

in the rat [31]. Taken together, EP2 receptors appear to be more robustly expressed in human 

pulmonary tissue in PAH compared to IP receptors, which appear more labile.  

Previous reports suggested that in large human pulmonary artery vessels, EP2 receptors are 

weakly functional because of an active EP3 system [32], though curiously high sensitivity to EP2 

agonists was noted in some instances [33]. We observed a far stronger staining of EP2 receptors in 

small versus large arteries, suggesting EP2 receptors may play a greater role in small pulmonary 

vessels. Although the functional consequence of activating these receptors in the lung requires 

investigation, studies in EP2−/− gene-deleted mice show that EP2 receptors regulate blood pressure and 

underpin the vasodilator response to PGE2 [27].  

This high expression of EP2 receptors in HPASMCs and small blood vessels from the lungs of 

patients with end-stage PAH contrasts with the weak staining for the IP receptor and PPAR 

previously reported in the intimal proliferating cells of distal arteries from IPAH patients [16]. The 

role of EP2 receptors in the context of remodelling in PAH is unknown, though neointimal 

hyperplasia in response to femoral artery injuries was markedly accelerated in EP2−/− mice and 

associated with the increased proliferation and migration of vascular smooth muscle cells [20] and 

fibroblasts [34], suggestive of a protective role of EP2 receptors in vascular remodelling.  

EP2 receptor staining was observed in the adventitial layer of arteries and in plexiform lesions 

in lung sections from PAH patients. The adventitial staining is likely to come from fibroblasts, which 

reside predominately in this layer, undergoing proliferation and producing significant amounts of 

collagen to increase adventitial thickness [35,36]. EP2 receptor staining may also come from 

inflammatory cells, particularly monocytes and dendritic cells, which also reside in the adventitia of 

remodelled arteries in PAH [18,35]. Thus, the elevated EP2 receptor expression relative to other 

prostanoid receptors found in the current study may reflect its up-regulation as a consequence of the 

disease. Importantly, EP2 receptors have a range of inhibitory actions on fibroblast function that could 

be beneficial in PAH [34,37]. 

The current study provides strong evidence for a key role of prostanoid EP2 receptors in the anti-

proliferative effects of treprostinil on PASMCs from PAH patients. This contrasts with prostanoid IP 

receptors that appear to be entirely responsible for the anti-proliferative properties of MRE-269, the 

active metabolite of selexipag. The broader pharmacological receptor profile of treprostinil may be 

important in pathologic conditions such as in PAH where down-regulation of the IP receptor occurs. 

Indeed, this current data strongly suggest that the activation of the more robust and highly expressed 

EP2 prostanoid receptor pathway, in concert with or in lieu of IP receptor signalling, makes an 

important contribution to the therapeutic activity of treprostinil. Thus, the EP2 receptor represents a 

previously unrecognised modulator of human pulmonary vascular cell proliferation, and hence 

remodelling, which has clinical implications for the treatment of PAH. 

4. Materials and Methods  

4.1. Source, Isolation, and Culture of PASMCs from Hypertensive and Normal Patients 

Lung tissue was taken after patient consent or the consent of a relative and with the Ethics 

Committee approval from the Great Ormond Street Hospital (ICH and GOSH REC 05/Q0508/45, 

11/4/05 and 16/3/10) and the Assistance Public–Hôpitaux de Paris (IRB00006477, agreement No. 11-
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045, 31/3/11). Samples were obtained from patients (n = 10) diagnosed as having IPAH who went on 

to have a transplant after failed treatment or who had died. Tissues were also obtained from patients 

with pulmonary hypertension due to lung diseases and/or hypoxia (group 3 classification) where the 

mean pulmonary artery pressure (mPAP) was 30 ± 3 mmHg. For controls, donor lungs not suitable 

for transplantation, but otherwise histologically normal, or parenchymal strips from macroscopically 

normal regions of lungs from patients with suspected malignancy, were used (n = 8).  

Primary cell lines of distal HPASMCs were derived by enzymatic dissociation as previously 

described [16] and grown at 37 °C in a humidified atmosphere of 5% CO2 in human smooth muscle 

basal medium (SMBM; Lonza, Slough, UK) containing 9% FBS (Life Technologies, Paisley, UK) and 

penicillin/streptomycin (45 units/mL Life Technologies). After reaching confluence, cells were 

washed with phosphate-buffered saline (PBS; Life Technologies) and treated with 0.25% trypsin-

EDTA (Life Technologies) for further passage. Only cells between passage 2 and 10 were used in 

experiments. 

4.2. Cell Proliferation Assays 

To assess the concentration-dependent effects of putative anti-proliferative agents (0.01–10,000 

nM), HPASMCs from PAH patients were seeded onto 96- (MTS assay) or 6- (cell counting) well plates 

at a density of 1 × 104 cells/mL (total volume 100 μL or 2 mL, respectively). Cells were grown in SMBM 

containing 9% FBS, and after 24 hr, the media was replaced with just SMBM for 48 hr to growth-arrest 

cells. Subsequently, the cells were incubated in SMBM containing 9% FBS plus 3 nM ET-1 for 4 days 

in the absence and presence of 0.1% dimethyl sulphoxide (DMSO), with and without the test agent. 

Proliferation responses were compared to cells incubated with no added growth factors over the 

same time period (the time control). Each intervention was performed in quintuplicate (MTS) or in 

duplicate (cell counting). 

In the majority of experiments, proliferation was assessed using an MTS cell proliferation assay 

kit (Promega, Southampton, UK), a colorimetric method for determining the number of viable cells 

based on the cleavage of MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium, inner salt) to formazan by cellular mitochondrial dehydrogenases. An 

increase in cell number leads to a proportional increase in the amount of formazan dye formed, which 

can be quantified by measuring the absorbance of the dye solution at 490 nm using a Versamax 

Microplate Reader (Sunnyvale, CA, USA). For each drug concentration, the absorbance was 

measured from five wells and the average was taken. The background absorbance was corrected by 

subtracting the average absorbance from the ‘no cell’ control wells from all other absorbance values. 

In other experiments (Figures 2E,F and 4), cell number was counted using an automated cell counter 

(ADAM; Digital Bio, Seoul, Korea), which provides counts of the total and non-viable cells using the 

fluorescent DNA binding dye, propidium iodide in lysed and non-lysed cells, respectively. Cell 

proliferation was normalized to the growth response without the solvent (taken as 100%) and shown 

as the % cell proliferation. Comparison of the agonist effects were made in the same patient cell 

isolates, usually at a similar passage number with experiments run in parallel under identical 

conditions and proliferation assays performed on the same day. 

4.3. Transfection of Small-Interfering RNA (siRNAs) Against EP2 Receptors 

Human PASMCs from PAH patients were seeded onto 6-well plates, and after 24 hr, they were 

growth arrested in serum-free SMBM (Lonza, UK) for 48 hr. Cells were then transfected according to 

the manufacturer’s instructions. Briefly, the siRNA (ON-TARGETplus SMARTpool PTGER2; 

Dharmacon, Cambridge, UK) was diluted in Dharmafect while lipofectamine (Invitrogen, Paisley, 

UK) was made up in an OptiMen-1 buffer (Invitrogen). The two were then mixed in a 1:1 ratio and 

left for 20 min at room temperature. Cells were transfected in the growth medium containing 

penicillin/streptomycin (Life Technologies) in the absence or presence of 30 pM of EP2 receptor siRNA 

or the scrambled negative control (Dharmacon, UK), added 4 hr prior to the addition of agonists. 

After 4 days, the cells were processed for Western Blotting, cAMP measurements, and qPCR as 

described below or the cells were counted in proliferation assays as described above. 
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4.4. Western Blotting 

Cells were lysed in RIPA buffer (Sigma-Aldrich, Gillingham, Dorset, UK) containing 

phosphatase inhibitors, and centrifuged at 900× g for 15 min at 4 °C; the resulting supernatant was 

stored at −80 °C until use. Protein samples (10 µg) were run on a NuPAGE@ Bis-Tris gel (Invitrogen, 

Paisley, UK) alongside pre-stained molecular weight markers (Fermantas, Cambridge, UK) and then 

transferred electrophoretically to PVDF membranes (Invitrogen). Blots were washed in PBS 

containing 5% skimmed milk and 0.1% Tween-20 (PBST) before being incubated overnight at 4 °C 

with primary antibodies diluted in PBST against EP2 receptor (1:1000 Cayman Cat No. 101750; 

Cambridge Bioscience, Cambridge, UK) and HSP90 (1:1000; Cell Signaling Technology, Cat No. 4877; 

Hitchin, UK) and then the appropriate secondary antibody for one hour at room temperature. To 

ensure equal amounts of protein loading, the blots were stripped (RE-BLOT PLUS Western Blot 

Stripping Solution, Cat. No. 2502, Merk Millipore, Watford, UK) and re-probed with an anti-β-actin 

antibody. Protein bands were visualized using the enhanced chemiluminescence plus reagent 

detection system (GE Healthcare, Little Chalfont, Buckinghamshire, UK) and imaged via a Gel-Doc 

system (Snygene; Cambridge, UK). ImageJ (National Institute of Mental Health, Bethesda, MD, USA) 

was used to compare the density of the bands relative to β-actin for both the IP and EP2 prostanoid 

receptor protein. 

4.5. Cyclic AMP Extraction and Measurement 

Human PASMCs were incubated with either butaprost or treprostinil for 30 min and the reaction 

was stopped by aspirating the media and washing cells with 1 mL of cold PBS. Cyclic AMP was 

extracted from cells by lysing them in 0.1 M HCl for 20 min on ice, followed by centrifugation of the 

suspension at 1000× g for 10 min at 4 °C. Intracellular cAMP was measured using a competitive 

enzyme immunoassay according to the manufacturer’s instructions (ADI-900-163; Enzo Life Sciences, 

Exeter, UK). The protein concentration in the supernatant was determined using a bicinchoninic acid 

(BCA) protein assay kit (Novagen, Watford, UK) and cAMP normalised per mg of protein. 

4.6. Real-Time Quantitative PCR (RT-qPCR) 

4.6.1. Cultured HPASMCs 

Quantitative PCR (qPCR) was used to determine the relative expression of different prostanoid 

receptors using a broadly similar method to that previously published [38]. Cultured HPASMCs were 

lysed and treated with TRIzol reagent (Life Technologies, UK) which was mixed with chloroform, 

centrifuged, and the aqueous phase then combined with propran-2-ol. Following this, the sample 

was incubated at −20 °C for 1.5 hr and the total RNA pellet isolated by centrifugation. The pellet was 

then washed twice in 75% ethanol and dissolved in 25 μL of nuclease-free water (Life Technologies, 

UK). The concentration and purity of RNA was determined using a NanoDrop-1000 

Spectrophotometer (Thermo Scientific, Wilmington, DE, USA) by measuring the optical density 

between 260 and 280 nM (260/280) and between 260 and 230 nM (260/230). Only samples with ratio 

values of 260/280 and 260/230 within the range 1.7–2.0 were accepted as good quality RNA. 

Complementary DNA (cDNA) was synthesised from 500 ng of total RNA in a reverse 

transcription reaction mixture containing MultiScribe Reverse Transcriptase (1.25 Unit/μL), dNTP 

(ATP, CTP, GTP, UTP; 500 μL each), 2.5 μM Oligo(dT)16 (to ensure the transcription of mRNA but 

not ribosomal or transfer RNA), RNase inhibitor (0.4 Unit/μL), MgCl2 (5.5 mM) and reaction RT buffer 

(Taqman Reverse Transcription Reagents kit, Applied Biosystems Roche, Branchburg, NJ, USA). The 

sample was incubated in a thermal cycler (Techne Genius; Stone, Staffordshire, UK) for 60 min at 42 

°C, 15 min at 72 °C followed by holding at 4 °C. The cDNA was stored at −20 °C until used. 

The primer set of human PGTIR (NM_000960; IP receptor), PTGER1 (NM_000955; EP1 receptor), 

PTGER2 (NM_000956; EP2 receptor), PTGER3 (NM_000957; EP3 receptor), PTGER4 (NM_000958; EP4 

receptor), PGTDR (NM_000953; DP1 receptor) and the reference gene -actin (NM_001101) were 

purchased from Qiagen (Manchester, UK). Real-time qPCR (RT-qPCR) were set up in triplicate in a 
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284-well microtitre plate using 5 μL per well from a 25 μL mixture containing 12.5 μL of the SYBR-

green solution (Applied Biosystems, Loughborough, UK), 2.5 μL of primer and 10 μL of cDNA (25 

ng). RT-qPCR was performed using an automated thermal cycler (ABI Prism 7900HT Sequence 

Detection System; Applied Biosystems, Foster City, CA, USA). The PCR cycle was 50 °C for 2 min, 95 

°C for 15 min, followed by 40 cycles at 94 °C for 15 s, 56 °C for 30 s and 76 °C for 30 s. The relative 

amount of cDNA was calculated using the ‘2−ΔΔCt threshold cycle’ method, which involves comparing 

the CT values of the samples of interest with a reference gene, β-actin, where CT is defined as the 

number of cycles required for the fluorescent signal to exceed background levels [39]. 

4.6.2. Pulmonary Artery 

Arteries (3–6 mm internal diameter) were ground in liquid nitrogen and RNA was isolated using 

a tissue RNA kit (OMEGA bio-tek, Norcross, GA, USA). cDNA was synthesised using the Moloney 

murine leukaemia virus reverse transcriptase (Invitrogen, Carlsbad, CA, USA). The reaction was 

conducted for 90 min at 37 °C using 0.16 μg of RNA in 10 μL of the reaction mixture, 0.5 mM of M-

MLV, and 0.5 µg/µL of Poly-d(T). RT-qPCR was performed using a LightCycler 480 Roche qPCR 

(Roche Diagnostics, Meylan, France). RT-qPCR was conducted in duplicate, with 4 µL of the cDNAs 

transferred to each real-time reaction together with 500 nM of primers and the SYBR Green Master 

Mix (Roche Diagnostics). The human PCR primer sequences were 5′-CACGAGGAGCAAAGCAAGTG-

3′ (sense), 5′-AGGTCTGGGCTCTCCAGTCTT-3′ (antisense), and 5′-TGCTCCTTGCCTTTCACGA-3′ for 

the IP receptor; 5′-TGCTCCTTGCCTTTCACGA-3′ (sense) and 5′-TCAGAACAGGAGGCCTAAGGA-3′ 

(antisense) for the EP2 receptor; and 5′-GGGCACCCTGGGCTAAACTGA-3′ (sense) and 5′-

TGCTCTTGCTGGGGCTGGT-3′ (antisense) for the GAPDH gene. The PCR thermal cycling conditions 

were preincubation at 95 °C for 5 min, followed by 40 cycles at 95 °C for 10 s, 60 °C for 30 s and 72 °C for 

15 s. The relative amount of cDNA was calculated using the ‘2−ΔΔCt threshold cycle’ method as described 

above (4.6.1.) using a different reference gene, GAPDH. 

4.7. Immunofluorescent Staining 

Human PASMCs or human umbilical vein endothelial cells (HUVECs; Cellworks, Buckingham, 

UK) were seeded into 8-chambered slides (BD Falcon, Oxford, UK) and grown in DMEM/F-12 or 

RPMI 1640 (Life Technologies, UK) containing serum. After reaching the required confluency, the 

cells were fixed with 4% paraformaldehyde (PFA; Sigma-Aldrich), followed by permeabilization in 

0.1% Triton X-100 (Sigma-Aldrich) for 10 min. Aspirated cells were then washed three times with 

PBS, followed by a 10 min incubation at room temperature with 3% bovine serum albumin (BSA) in 

0.01% Triton X-100. Both primary and secondary antibodies were diluted in 3% BSA in 0.01% Triton 

X-100. The primary was added to chambers and left overnight at 4 °C and the appropriate secondary 

antibody added for one hour at room temperature followed by the addition of the fluorescent nuclear 

stain, DAPI (Vector Laboratories, Southgate UK). The following primary antibodies were used: 

mouse monoclonal anti-α-SMA (1:1000, A-2547; Sigma-Aldrich), rabbit polyclonal anti-SM-22 alpha 

(1:500, ab14106; Abcam, Cambridge, UK), polyclonal rabbit anti-human vWF (1:400, A0082; Agilent 

Technologies, Stockport, Cheshire, UK), and mouse monoclonal anti-human CD-31 (1:400, 35285S; 

Cell Signaling Technology, Hitchin, UK). Alexafluor-555 goat anti-mouse IgG (1:1000, A11001; 

Invitrogen, Paisley, UK) was used as a secondary for α-SMA and CD-31 staining and Alexafluor-488 

donkey anti-rabbit IgG (1:1000, A21206; Invitrogen, Paisley, UK) was used for SM-22 and vWF 

staining. Omission of the primary antibody served as a negative control. Confocal imaging was 

performed using a LEICA TCS SPE upright microscope (Leica Microsystems, Milton Keynes, UK) 

and Z-stack images were acquired and analysed using proprietary LEICA LAS X Software (Leica 

Microsystems). 

4.8. Histology and Immunohistochemistry 

Blocks of lung tissue from control and PAH patients were fixed and 10 µM serial sections were 

cut for histological examination. Two slides of each section were stained to look for gross pathological 
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changes using either hematoxylin and eosin (H & E) staining, where nuclei stain blue/purple while 

cytoplasm and muscle stain a purplish red or Van Gieson (EVG) staining, which stains collagen in 

red, elastic fibres and nuclei in black and other tissue elements in yellow. Antibodies to α-SMA 

(Sigma-Aldrich, Poole, UK; Cat No. A2547), the endothelium marker, CD-31 (Abcam, Cambridge, 

UK; ab28364) and the EP2 receptor (Abcam, Cat No. ab117270), were used to probe for their 

expression in proximal and distal blood vessels. Sections were incubated overnight at 4 °C with the 

primary antibody (diluted in PBS with 0.1% BSA at 1:300–500) followed by incubation with a biotin-

conjugated secondary antibody (Abcam) for 1 hr at room temperature. Sections were then developed 

utilizing avidin-conjugated horseradish peroxidase (HRP) and staining was visualised with 

diaminobenzidine (Sigma-Aldrich) in sections lightly counterstained with haematoxylin (Sigma-

Aldrich). Control and PAH sections were handled in the same way, being developed on the same 

day and exposed to the chromagen for exactly the same length of time. Omission of the primary 

antibody served as a negative control. Specificity of staining was controlled with an inappropriate 

secondary antibody. Colour images were acquired and the results were stored digitally after 

examination by virtual microscopy (Hamamatsu Photonics, Welwyn Garden City, UK). 

For histological analysis, the endothelial and smooth muscle layers were identified by CD-31 

and α-SMA staining, respectively, in serial sections of distal pulmonary arteries. The staining area 

was quantified using the ImageJ colour threshold function, which filters out unwanted colours and 

then transforms the image into an 8-bit format. The staining area was quantified using the ‘Analyse 

Particles’ function which assigns a pixel value based on the intensity of the brown staining. Staining 

in the adventitial layer and plexiform lesions was excluded from the quantification analysis. Data 

were expressed as the pixel area of the respective staining for CD-31, α-SMA or EP2 receptor or as the 

ratio of EP2/-SMA+CD31 area staining. 

4.9. Materials 

MRE-269 ([4[(5,6diphenylpyrazinyl)(1methylethyl) amino]butoxy]acetic acid was purchased 

from Cayman Chemical Company (Ann Arbor, MI, USA) and PF-04418948 (selective EP2 antagonist) 

was purchased from Tocris Bioscience (Bristol, UK). RO-1138452 (IP selective antagonist) and 

butaprost (15-deoxy-16S-hydroxy-17-cyclobutyl PGE1 methyl ester), a selective EP2 agonist, was 

purchased from Cambridge Bioscience UK and endothelin-1 peptide from Enzo Life Science (Exeter, 

UK). Treprostinil was supplied by the United Therapeutics Corp (Research Triangle Park, NC, USA). 

Stocks of all drugs were made up in sterile DSMO (Sigma-Aldrich) to a final concentration of 10 mM. 

Drugs were serially diluted in growth medium, with the solvent concentration in each well remaining 

constant (0.1%). 

4.10. Statistical Analysis 

Data are expressed as mean ± S.E.M. of n experiments from a minimum of 4 cell isolates derived 

from different patients. The maximal % inhibition (IMax) and the log concentration causing 50% 

inhibition (IC50) of cell proliferation was extrapolated from each single experiment using the variable 

slope sigmoidal-curve fitting routine obtained using the Prism 7 software (GraphPad, San Diego, CA, 

USA). The data are reported as IC50 (nM) values for clarity in the text or negative log (pIC50) values to 

allow appropriate pharmacological statistical evaluation in Table S2. Significance was assessed 

between two groups using a Student t-test and between multiple groups using either one-way 

analysis of variance (ANOVA) where Dunnett’s was used for comparisons against a control and 

Newman-Keuls test for multiple comparisons of different groups or by two-way ANOVA (with 

Bonferroni or Holm–Sidak’s multiple comparisons test) as indicated in the legend. p-value < 0.05 was 

considered significant, but only shown at the 95% confidence limit. 

4.11. Key Principles of the Study Methodology 

This work was conducted with due attention to detailed proposals recently discussed by Bonnet 

and colleagues [40] and Provencher and colleagues [41] concerning the limitations of the potential 
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translation of basic research using human tissue to PAH disease presenting in patients. Thus, due 

care was taken regarding the isolation and purity of the HPASMCs, their histological assessment in 

situ and the appropriate selection of patients and cells for both control samples and PAH samples. 

To this end, the same protocol for cell incubation and data acquisition was used for both ‘control 

cells’ and ‘PAH cells’ along with the replication of results in multiple cell lines over a wide patient 

age range. In all figure legends, the number of independent biological data points and patient 

samples has been included. The number of technical replicates is defined in each methods section. 

The concept that EP2 receptors will be targeted (activated) at therapeutic concentrations of treprostinil 

has been independently verified in two further species: mouse and rabbit [14]. All datasets on which 

the conclusions of this article rely will be made available on request, as long as they are within ethical 

consideration to prevent amongst other things, patient identification. 

Supplementary Materials: Supplementary materials can be found at www.mdpi.com/xxx/s1. 
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-SMA -smooth muscle actin 

BCA bicinchoninic acid 

BSA bovine serum albumin 

butaprost 15-deoxy-16S-hydroxy-17-cyclobutyl PGE1 methyl ester 

CD-31 

DAPI 

DMSO 

cluster of differentiation 31 

4’,6-diamidino-2-phenylindole 

dimethyl sulphoxide 

ET-1 endothelin-1 

EVG Van Gieson 

H&E hematoxylin and eosin 

HUVECs human umbilical vein endothelial cells 

HPASMCs human pulmonary arterial smooth muscle cells 

IC50 log of concentration causing 50% inhibition 

IMax maximal % inhibition 

IPAH idiopathic pulmonary arterial hypertension 

mPAP mean pulmonary artery pressure 
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MRE-269 4[(5,6diphenylpyrazinyl)(1methylethyl) amino]butoxy]acetic acid 

MTS 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 

inner salt 

PAH pulmonary arterial hypertension 

PASMCs pulmonary arterial smooth muscle cells 

PBS phosphate-buffered saline 

PBST phosphate-buffered saline Tween-20 

PFA paraformaldehyde 

pIC50 negative log of concentration causing 50% inhibition 

PVRI pulmonary vascular resistance index 

qPCR quantitative PCR 

RT-qPCR Real-time qPCR 

siRNAs small interfering RNAs 

SMBM smooth muscle basal medium 

vWF von Willebrand Factor 
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