4 research outputs found

    Increased chromatin accessibility facilitates intron retention in specific cell differentiation states

    Get PDF
    Dynamic intron retention (IR) in vertebrate cells is of widespread biological importance. Aberrant IR is associated with numerous human diseases including several cancers. Despite consistent reports demonstrating that intrinsic sequence features can help introns evade splicing, conflicting findings about cell type or condition-specific IR regulation by trans-regulatory and epigenetic mechanisms demand an unbiased and systematic analysis of IR in a controlled experimental setting. We integrated matched mRNA sequencing (RNA-seq), whole-genome bisulfite sequencing (WGBS), nucleosome occupancy methylome sequencing (NOMe-Seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data from primary human myeloid and lymphoid cells. Using these multi-omics data and machine learning we trained two complementary models to determine the role of epigenetic factors in the regulation of IR in cells of the innate immune system. We show that increased chromatin accessibility, as revealed by nucleosome-free regions, contributes substantially to the retention of introns in a cell-specific manner. We also confirm that intrinsic characteristics of introns are key for them to evade splicing. This study suggests an important role of chromatin architecture in IR regulation. With an increasing appreciation that pathogenic alterations are linked to RNA processing, our findings may provide useful insights for the development of novel therapeutic approaches that target aberrant splicing

    Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation

    Get PDF
    This document is the Accepted Manuscript version, made available in accordance to Springer Nature Terms of reuse of archived manuscripts.Despite evolutionary conserved mechanisms to silence transposable element activity, there are drastic differences in the abundance of transposable elements even among closely related plant species. We conducted a de novo assembly for the 375 .Mb genome of the perennial model plant, Arabis alpina. Analysing this genome revealed long-lasting and recent transposable element activity predominately driven by Gypsy long terminal repeat retrotransposons, which extended the low-recombining pericentromeres and transformed large formerly euchromatic regions into repeat-rich pericentromeric regions. This reduced capacity for long terminal repeat retrotransposon silencing and removal in A. alpina co-occurs with unexpectedly low levels of DNA methylation. Most remarkably, the striking reduction of symmetrical CG and CHG methylation suggests weakened DNA methylation maintenance in A. alpina compared with Arabidopsis thaliana. Phylogenetic analyses indicate a highly dynamic evolution of some components of methylation maintenance machinery that might be related to the unique methylation in A. alpina.Peer reviewe
    corecore