797 research outputs found

    On optimal block resampling for Gaussian-subordinated long-range dependent processes

    Full text link
    Block-based resampling estimators have been intensively investigated for weakly dependent time processes, which has helped to inform implementation (e.g., best block sizes). However, little is known about resampling performance and block sizes under strong or long-range dependence. To establish guideposts in block selection, we consider a broad class of strongly dependent time processes, formed by a transformation of a stationary long-memory Gaussian series, and examine block-based resampling estimators for the variance of the prototypical sample mean; extensions to general statistical functionals are also considered. Unlike weak dependence, the properties of resampling estimators under strong dependence are shown to depend intricately on the nature of non-linearity in the time series (beyond Hermite ranks) in addition the long-memory coefficient and block size. Additionally, the intuition has often been that optimal block sizes should be larger under strong dependence (say O(n1/2)O(n^{1/2}) for a sample size nn) than the optimal order O(n1/3)O(n^{1/3}) known under weak dependence. This intuition turns out to be largely incorrect, though a block order O(n1/2)O(n^{1/2}) may be reasonable (and even optimal) in many cases, owing to non-linearity in a long-memory time series. While optimal block sizes are more complex under long-range dependence compared to short-range, we provide a consistent data-driven rule for block selection, and numerical studies illustrate that the guides for block selection perform well in other block-based problems with long-memory time series, such as distribution estimation and strategies for testing Hermite rank

    A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics

    Get PDF
    Efron (1979) introduced the bootstrap method for independent data but it cannot be easily applied to spatial data because of their dependency. For spatial data that are correlated in terms of their locations in the underlying space the moving block bootstrap method is usually used to estimate the precision measures of the estimators. The precision of the moving block bootstrap estimators is related to the block size which is difficult to select. In the moving block bootstrap method also the variance estimator is underestimated. In this paper, first the semi-parametric bootstrap is used to estimate the precision measures of estimators in spatial data analysis. In the semi-parametric bootstrap method, we use the estimation of the spatial correlation structure. Then, we compare the semi-parametric bootstrap with a moving block bootstrap for variance estimation of estimators in a simulation study. Finally, we use the semi-parametric bootstrap to analyze the coal-ash data

    Goodness of fit tests for a class of Markov random field models

    Get PDF
    This paper develops goodness of fit statistics that can be used to formally assess Markov random field models for spatial data, when the model distributions are discrete or continuous and potentially parametric. Test statistics are formed from generalized spatial residuals which are collected over groups of nonneighboring spatial observations, called concliques. Under a hypothesized Markov model structure, spatial residuals within each conclique are shown to be independent and identically distributed as uniform variables. The information from a series of concliques can be then pooled into goodness of fit statistics. Under some conditions, large sample distributions of these statistics are explicitly derived for testing both simple and composite hypotheses, where the latter involves additional parametric estimation steps. The distributional results are verified through simulation, and a data example illustrates the method for model assessment.Comment: Published in at http://dx.doi.org/10.1214/11-AOS948 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Negative-energy perturbations in cylindrical equilibria with a radial electric field

    Get PDF
    The impact of an equilibrium radial electric field EE on negative-energy perturbations (NEPs) (which are potentially dangerous because they can lead to either linear or nonlinear explosive instabilities) in cylindrical equilibria of magnetically confined plasmas is investigated within the framework of Maxwell-drift kinetic theory. It turns out that for wave vectors with a non-vanishing component parallel to the magnetic field the conditions for the existence of NEPs in equilibria with E=0 [G. N. Throumoulopoulos and D. Pfirsch, Phys. Rev. E 53, 2767 (1996)] remain valid, while the condition for the existence of perpendicular NEPs, which are found to be the most important perturbations, is modified. For ∣eiϕ∣≈Ti|e_i\phi|\approx T_i (ϕ\phi is the electrostatic potential) and Ti/Te>βc≈P/(B2/8π)T_i/T_e > \beta_c\approx P/(B^2/8\pi) (PP is the total plasma pressure), a case which is of operational interest in magnetic confinement systems, the existence of perpendicular NEPs depends on eνEe_\nu E, where eνe_\nu is the charge of the particle species ν\nu. In this case the electric field can reduce the NEPs activity in the edge region of tokamaklike and stellaratorlike equilibria with identical parabolic pressure profiles, the reduction of electron NEPs being more pronounced than that of ion NEPs.Comment: 30 pages, late
    • …
    corecore