1,694 research outputs found
High energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws
Recent experiments on in-situ high-energy self-ion irradiation of tungsten
(W) show the occurrence of unusual cascade damage effects resulting from single
ion impacts, shedding light on the nature of radiation damage expected in the
tungsten components of a fusion reactor. In this paper, we investigate the
dynamics of defect production in 150 keV collision cascades in W at atomic
resolution, using molecular dynamics simulations and comparing predictions with
experimental observations. We show that cascades in W exhibit no subcascade
break-up even at high energies, producing a massive, unbroken molten area,
which facilitates the formation of large defect clusters. Simulations show
evidence of the formation of both 1/2 and interstitial-type
dislocation loops, as well as the occurrence of cascade collapse resulting in
vacancy-type dislocation loops, in excellent agreement with experimental
observations. The fractal nature of the cascades gives rise to a scale-less
power law type size distribution of defect clusters.Comment: 6 pages, 3 figure
Comparison of repulsive interatomic potentials calculated with an all-electron DFT approach with experimental data
The interatomic potential determines the nuclear stopping power in materials. Most ion irradiation simulation models are based on the universal-Ziegler-Biersack-Littmark (ZBL) potential (Ziegler et a1.,1983), which, however, is an average and hence may not describe the stopping of all ion-material combinations well. Here we consider pair-specific interatomic potentials determined experimentally and by density functional theory simulations with DMol approach (DMol software, 1997) to choose basic wave functions. The interatomic potentials calculated using the DMol approach demonstrate an unexpectedly good agreement with experimental data. Differences are mainly observed for heavy atom systems, which suggests they can be improved by extending a basis set and more accurately considering the relativistic effects. Experimental data prove that the approach of determining interatomic potentials from quasielastic scattering can be successfully used for modeling collision cascades in ion-solids collisions. The data obtained clearly indicate that the use of any universal potential is limited to internuclear distances R <7 a(f) (a(f) is the Firsov length). (C) 2017 Published by Elsevier B.V.Peer reviewe
Sputtering yields exceeding 1000 by 80keV Xe irradiation of Au nanorods
Using experiments and computer simulations, we find that 80 keV Xe ion irradiation of Au nanorods can produce sputtering yields exceeding 1000, which to our knowledge are the highest yields reported for sputtering by single ions in the nuclear collision regime. This value is enhanced by more than an order of magnitude compared to the same irradiation of flat Au surfaces. Using MD simulations, we show that the very high yield can be understood as a combination of enhanced yields due to low incoming angles at the sides of the nanowire, as well as the high surface-to-volume ratio causing enhanced explosive sputtering from heat spikes. We also find, both in experiments and simulations, that channeling has a strong effect on the sputtering yield: if the incoming beam happens to be aligned with a crystal axis of the nanorod, the yield can decrease to about 100
Low energy sputtering of Mo surfaces
Surfaces of materials subject to irradiation will be affected by sputtering, which can be a beneficial effect, like in the coating industry where a material is sputtered and redeposited on to another material to coat it. However, in most cases sputtering is an unwanted side-effect, for instance in nuclear fusion reactors, where the wall material will be degraded. This effect needs to be understood in order to be able to predict its consequences. To understand the sputtering, on an atomistic level, we have thoroughly investigated molybdenum surface sputtering by computational means. Molybdenum was chosen as detailed experimental studies have been carried out on it and it is one candidate material for the diagnostic mirrors in ITER, facing the plasma. In this study, we thoroughly investigate the molybdenum samples of different surface orientations, and their response to low energy argon plasma irradiation, by molecular dynamics simulations. We find both a surface orientation and ion energy specific sputtering yield of the samples, and a very good agreement with the experiments available in the literature. A few different setups were investigated to observe differences as well as to understand the key features affecting the sputtering events. The different simulation setups revealed the optimal one to represent the experimental conditions as well as the mechanisms behind the observed discrepancies between different modelling setups. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
Observation of ripples under different angles
The off-normal ion irradiation of semiconductor materials is seen to induce
nanopatterning effects. Different theories are proposed to explain the
mechanisms that drive self-reorganization of amorphisable surfaces. One of the
prominent hypothesis associates formation of nanopatterning with the changes of
sputtering characteristics caused by changes in surface morphology. At
ultra-low energy, when sputtering is negligible, the Si surface has still been
seen to re-organize forming surface ripples with the wave vector either aligned
with the ion beam direction or perpendicular to it.In this work, we investigate
the formation of ripples using molecular dynamics in all the three regimes of
ripple formation: low angles where no ripples form, intermediate regime where
the ripple wave vectors are parallel to the beam, and high angles where they
are perpendicular to it. We obtain atom-level insight on how the ion-beam
driven atomic dynamics at the surface contributes to organization, or lack of
it, in all the different regimes. Results of our simulations agree well with
experimental observations in the same range of ultra-low energy of ion
irradiation
Uncertainties of Synthetic Integrated Colors as Age Indicators
We investigate the uncertainties in the synthetic integrated colors of simple
stellar populations. Three types of uncertainties are from the stellar models,
the population synthesis techniques, and from the spectral libraries. Despite
some skepticism, synthetic colors appear to be reliable age indicators when
used for select age ranges. Rest-frame optical colors are good age indicators
at ages 2 -- 7Gyr. At ages sufficiently large to produce hot HB stars, the
UV-to-optical colors provide an alternative means for measuring ages. This UV
technique may break the age-metallicity degeneracy because it separates old
populations from young ones even in the lack of metallicity information. One
can use such techniques on extragalactic globular clusters and perhaps even for
high redshift galaxies that are passively evolving to study galaxy evolution
history.Comment: 38 pages, 21 figures, LaTex, 2003, ApJ, 582 (Jan 1), in pres
Direct observation of size scaling and elastic interaction between nano-scale defects in collision cascades
Using in-situ transmission electron microscopy, we have directly observed
nano-scale defects formed in ultra-high purity tungsten by low-dose high energy
self-ion irradiation at 30K. At cryogenic temperature lattice defects have
reduced mobility, so these microscope observations offer a window on the
initial, primary damage caused by individual collision cascade events. Electron
microscope images provide direct evidence for a power-law size distribution of
nano-scale defects formed in high-energy cascades, with an upper size limit
independent of the incident ion energy, as predicted by Sand et al. [Eur. Phys.
Lett., 103:46003, (2013)]. Furthermore, the analysis of pair distribution
functions of defects observed in the micrographs shows significant
intra-cascade spatial correlations consistent with strong elastic interaction
between the defects
Nanoscale density fluctuations in swift heavy ion irradiated amorphous SiO2
We report on the observation of nanoscale density fluctuations in 2 μm thick amorphous SiO₂ layers irradiated with 185 MeV Au ions. At high fluences, in excess of approximately 5 × 10¹² ions/cm², where the surface is completely covered by ion tracks, synchrotron small angle x-ray scattering measurements reveal the existence of a steady state of density fluctuations. In agreement with molecular dynamics simulations, this steady state is consistent with an ion track “annihilation” process, where high-density regions generated in the periphery of new tracks fill in low-density regions located at the center of existing tracks.The authors acknowledge the Australian Research
Council and the Australian Synchrotron Research Program
for financial support and thank the staff at the ANU Heavy
Ion facility for their continued technical assistance. O.P.,
F.D., and K.N. acknowledge financial support from the
Academy of Finland under its Centre of Excellence program
as well as the OPNA project, and grants of computer
capacity from CSC
- …