158 research outputs found

    Odin observations of ammonia in the Sgr A +50 km/s Cloud and Circumnuclear Disk

    Get PDF
    Context. The Odin satellite is now into its sixteenth year of operation, much surpassing its design life of two years. One of the sources which Odin has observed in great detail is the Sgr A Complex in the centre of the Milky Way. Aims. To study the presence of NH3 in the Galactic Centre and spiral arms. Methods. Recently, Odin has made complementary observations of the 572 GHz NH3 line towards the Sgr A +50 km/s Cloud and Circumnuclear Disk (CND). Results. Significant NH3 emission has been observed in both the +50 km/s Cloud and the CND. Clear NH3 absorption has also been detected in many of the spiral arm features along the line of sight from the Sun to the core of our Galaxy. Conclusions. The very large velocity width (80 km/s) of the NH3 emission associated with the shock region in the southwestern part of the CND may suggest a formation/desorption scenario similar to that of gas-phase H2O in shocks/outflows.Comment: 5 pages, 3 figures, 3 table

    A mid-IR survey of the L 1641-N region with ISOCAM

    Full text link
    We present an analysis of the L 1641 outflow region using broad-band and narrow-band imaging data at mid-infrared wavelengths from ISOCAM. We detect a total of 34 sources in the 7.657.65^{\prime} x 8.408.40^{\prime} region covered by the broad-band filters. Four of these sources have no reported detection in previous studies of the region. We find that the source previously identified as the near-IR counter-part to the IRAS detected point-source (IRAS 05338-0624) is not the brightest source in the wavelength region of the IRAS 12 \micron\ filter. We find instead that a nearby object (within the beam of IRAS and not detected at near-IR wavelengths) outshines all others sources in the area by a factor of \sim2. We submit that this source is likely to be the IRAS detected point source. A comparison of the near-IR (J-H vs H-K) and mid-IR (J-K vs [6.7 um]-[14 um]) color-color plots shows only four sources with excess emission at near-IR wavelengths, but atleast 85% of all sources show excess emission at mid-IR wavelengths. The CVF spectra suggest a range of evolutionary status in the program stars ranging from embedded YSOs to the young disks. When combined with optical and near-IR age estimates, these results show active current star-formation in the region that has been on-going for at least 2 Myr.Comment: Submitted to ApJ. Abstracted edited for arXiv submission Replaced by version accepted by Ap

    Measuring Magnetic Fields in Ultracool Stars and Brown Dwarfs

    Full text link
    We present a new method for direct measurement of magnetic fields on ultracool stars and brown dwarfs. It takes advantage of the Wing-Ford band of FeH, which are seen throughout the M and L spectral types. These molecular features are not as blended as other optical molecular bands, are reasonably strong through most of the spectral range, and exhibit a response to magnetic fields which is easier to detect than other magnetic diagnostics, including the usual optical and near-infrared atomic spectral lines that have heretofore been employed. The FeH bands show a systematic growth as the star gets cooler. We do not find any contamination by CrH in the relevant spectral region. We are able to model cool and rapidly-rotating spectra from warmer, slowly-rotating spectra utilizing an interpolation scheme based on optical depth scaling. We show that the FeH features can distinguish between negligible, moderate, and high magnetic fluxes on low-mass dwarfs, with a current accuracy of about one kilogauss. Two different approaches to extracting the information from the spectra are developed and compared. Which one is superior depends on a number of factors. We demostrate the validity of our new procedures by comparing the spectra of three M stars whose magnetic fluxes are already known from atomic line analysis. The low and high field stars are used to produce interpolated moderate-strength spectra which closely resemble the moderate-field star. The assumption of linear behavior for the magnetic effects appears to be reasonable, but until the molecular constants are better understood the method is subject to that assumption, and rather approximate. Nonetheless, it opens a new regime of very low-mass objects to direct confirmation and testing of their magnetic dynamos.Comment: 36 preprint pages, accepted for publication in Ap

    Line Intensities and Molecular Opacities of the FeH F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i Transition

    Full text link
    We calculate new line lists and opacities for the F4ΔiX4ΔiF^4\Delta_i-X^4\Delta_i transition of FeH. The 0-0 band of this transition is responsible for the Wing-Ford band seen in M-type stars, sunspots and brown dwarfs. The new Einstein A values for each line are based on a high level ab initio calculation of the electronic transition dipole moment. The necessary rotational line strength factors (H\"onl-London factors) are derived for both the Hund's case (a) and (b) coupling limits. A new set of spectroscopic constants were derived from the existing FeH term values for v=0, 1 and 2 levels of the XX and FF states. Using these constants extrapolated term values were generated for v=3 and 4 and for JJ values up to 50.5. The line lists (including Einstein A values) for the 25 vibrational bands with v\leq4 were generated using a merged list of experimental and extrapolated term values. The FeH line lists were use to compute the molecular opacities for a range of temperatures and pressures encountered in L and M dwarf atmospheres. Good agreement was found between the computed and observed spectral energy distribution of the L5 dwarf 2MASS-1507.Comment: 52 pages, 3 figures, many tables, accepted for publication in the Astrophysical Journal Supplement

    A Three Micron Survey of the Chamaeleon I Dark Cloud

    Get PDF
    We describe an L-band photometric survey of 0.5 square deg of the Cha I dark cloud. The survey has a completeness limit of L < 11.0. Our survey detects 124 sources, including all known pre-main sequence stars with L < 11. The fraction of sources with near-IR excess emission is 58% +- 4% for K = 9-11. Cha I sources have bluer H-K and K-L colors than pre-main sequence stars in Taurus-Auriga. These sources also have a strong correlation between EW(H-alpha) and K-L. Stars with K-L 0.6 have strong H-alpha emission. Because many Cha I sources are heavily reddened, this division between weak emission T Tauri stars and classical T Tauri stars occurs at a redder K-L than in Taurus-Auriga.Comment: 12 pages of text, 4 figures, and 1 three page table of data modified version adds reference and acknowledgemen

    The Disk Population of the Chamaeleon I Star-Forming Region

    Full text link
    We present a census of circumstellar disks in the Chamaeleon I star-forming region. Using the Infrared Array Camera and the Multiband Imaging Photometer onboard the Spitzer Space Telescope, we have obtained images of Chamaeleon I at 3.6, 4.5, 5.8, 8.0, and 24 um. To search for new disk-bearing members of the cluster, we have performed spectroscopy on objects that have red colors in these data. Through this work, we have discovered four new members of Chamaeleon I with spectral types of M4, M6, M7.5, and L0. The first three objects are highly embedded (A_J~5) and reside near known protostars, indicating that they may be among the youngest low-mass sources in the cluster (<1 Myr). The L0 source is the coolest known member of Chamaeleon I. Its luminosity implies a mass of 0.004-0.01 M_sun, making it the least massive brown dwarf for which a circumstellar disk has been reliably detected. To characterize the disk population in Chamaeleon I, we have classified the infrared spectral energy distributions of the 203 known members that are encompassed by the Spitzer images. Through these classifications, we find that the disk fraction in Chamaeleon I is roughly constant at ~50% from 0.01 to 0.3 M_sun. These data are similar to the disk fraction of IC 348, which is a denser cluster at the same age as Chamaeleon I. However, the disk fraction at M>1 M_sun is significantly higher in Chamaeleon I than in IC 348 (65% vs. 20%), indicating longer disk lifetimes in Chamaeleon I for this mass range. Thus, low-density star-forming regions like Chamaeleon I may offer more time for planet formation around solar-type stars than denser clusters

    ISOCAM observations of the L1551 star formation region

    Get PDF
    The results of a deep mid-IR ISOCAM survey of the L1551 dark molecular cloud are presented. The aim of this survey is a search for new YSO (Young Stellar Object) candidates, using two broad-band filters centred at 6.7 and 14.3 micron. Although two regions close to the centre of L1551 had to be avoided due to saturation problems, 96 sources were detected in total (76 sources at 6.7 micron and 44 sources at 14.3 micron). Using the 24 sources detected in both filters, 14 were found to have intrinsic mid-IR excess at 14.3 micron and were therefore classified as YSO candidates. Using additional observations in B, V, I, J, H and K obtained from the ground, most candidates detected at these wavelengths were confirmed to have mid-IR excess at 6.7 micron as well, and three additional YSO candidates were found. Prior to this survey only three YSOs were known in the observed region (avoiding L1551 IRS5/NE and HL/XZ Tau). This survey reveals 15 new YSO candidates, although several of these are uncertain due to their extended nature either in the mid-IR or in the optical/near-IR observations. Two of the sources with mid-IR excess are previously known YSOs, one is a brown dwarf MHO 5 and the other is the well known T Tauri star HH30, consisting of an outflow and an optically thick disk seen edge on.Comment: 14 Pages, 8 Figure

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    ISOCAM observations of the rho Ophiuchi cloud: Luminosity and mass functions of the pre-main sequence embedded cluster

    Get PDF
    We present the results of the first extensive mid-infrared (IR) imaging survey of the rho Ophiuchi embedded cluster, performed with the ISOCAM camera on board the ISO satellite. The main molecular cloud L1688, as well as L1689N and L1689S, have been completely surveyed for point sources at 6.7 and 14.3 micron. A total of 425 sources are detected including 16 Class I, 123 Class II, and 77 Class III young stellar objects (YSOs). Essentially all of the mid-IR sources coincide with near-IR sources, but a large proportion of them are recognized for the first time as YSOs. Our dual-wavelength survey allows us to identify essentially all the YSOs with IR excess in the embedded cluster down to Fnu ~ 10 - 15 mJy. It more than doubles the known population of Class II YSOs and represents the most complete census to date of newly formed stars in the rho Ophiuchi central region. The stellar luminosity function of the complete sample of Class II YSOs is derived with a good accuracy down to L= 0.03 Lsun. A modeling of this lumino- sity function, using available pre-main sequence tracks and plausible star for- mation histories, allows us to derive the mass distribution of the Class II YSOs which arguably reflects the IMF of the embedded cluster. We estimate that the IMF in rho Ophiuchi is well described by a two-component power law with a low- mass index of -0.35+/-0.25, a high-mass index of -1.7 (to be compared with the Salpeter value of -1.35), and a break occurring at M = 0.55+/-0.25 Msun. This IMF is flat with no evidence for a low-mass cutoff down to at least 0.06 Msun.Comment: A&A Document Class -- version 5.01, 27 pages, 10 figures v2: typos added including few changes in source numberin

    Submillimeter Emission from Water in the W3 Region

    Full text link
    We have mapped the submillimeter emission from the 1(10)-1(01) transition of ortho-water in the W3 star-forming region. A 5'x5' map of the W3 IRS4 and W3 IRS5 region reveals strong water lines at half the positions in the map. The relative strength of the Odin lines compared to previous observations by SWAS suggests that we are seeing water emission from an extended region. Across much of the map the lines are double-peaked, with an absorption feature at -39 km/s; however, some positions in the map show a single strong line at -43 km/s. We interpret the double-peaked lines as arising from optically thick, self-absorbed water emission near the W3 IRS5, while the narrower blue-shifted lines originate in emission near W3 IRS4. In this model, the unusual appearance of the spectral lines across the map results from a coincidental agreement in velocity between the emission near W3 IRS4 and the blue peak of the more complex lines near W3 IRS5. The strength of the water lines near W3 IRS4 suggests we may be seeing water emission enhanced in a photon-dominated region.Comment: Accepted to A&A Letters as part of the special Odin issue; 4 page
    corecore