62 research outputs found

    Observational Dutch Young Symptomatic StrokE studY (ODYSSEY): Study rationale and protocol of a multicentre prospective cohort study

    Get PDF
    Background: The proportion of strokes occurring in younger adults has been rising over the past decade. Due to the far longer life expectancy in the young, stroke in this group has an even larger socio-economic impact. However, information on etiology and prognosis remains scarce.Methods/design: ODYSSEY is a multicentre prospective cohort study on the prognosis and risk factors of patients with a first-ever TIA, ischemic stroke or intracerebral hemorrhage aged 18 to 49 years. Our aim is to include 1500 patients. Primary outcome will be all cause mortality and risk of recurrent vascular events. Secondary outcome will be the risk of post-stroke epilepsy and cognitive impairment. Patients will complete structured questionnaires on outcome measures and risk factors. Both well-documented and less well-documented risk factors and potentially acute trigger factors will be investigated. Patients will be followed every 6 months for at least 3 years. In addition, an extensive neuropsychological assessment will be administered both at baseline and 1 year after the stroke/TIA. Furthermore we will include 250 stroke-free controls, who will complete baseline assessment and one neuropsychological assessment.Discussion: ODYSSEY is designed to prospectively determine prognosis after a young stroke and get more insight into etiology of patients with a TIA, ischemic stroke and intracerebral hemorrhage in patients aged 18 to 49 years old in a large sample size

    Cassiopeia A, Cygnus A, Taurus A, and Virgo A at ultra-low radio frequencies

    Get PDF
    Context. The four persistent radio sources in the northern sky with the highest flux density at metre wavelengths are Cassiopeia A, Cygnus A, Taurus A, and Virgo A; collectively they are called the A-team. Their flux densities at ultra-low frequencies (< 100 MHz) can reach several thousands of janskys, and they often contaminate observations of the low-frequency sky by interfering with image processing. Furthermore, these sources are foreground objects for all-sky observations hampering the study of faint signals, such as the cosmological 21 cm line from the epoch of reionisation. Aims. We aim to produce robust models for the surface brightness emission as a function of frequency for the A-team sources at ultra-low frequencies. These models are needed for the calibration and imaging of wide-area surveys of the sky with low-frequency interferometers. This requires obtaining images at an angular resolution better than 15\u2033 with a high dynamic range and good image fidelity. Methods. We observed the A-team with the Low Frequency Array (LOFAR) at frequencies between 30 MHz and 77 MHz using the Low Band Antenna system. We reduced the datasets and obtained an image for each A-team source. Results. The paper presents the best models to date for the sources Cassiopeia A, Cygnus A, Taurus A, and Virgo A between 30 MHz and 77 MHz. We were able to obtain the aimed resolution and dynamic range in all cases. Owing to its compactness and complexity, observations with the long baselines of the International LOFAR Telescope will be required to improve the source model for Cygnus A further
    • 

    corecore