35 research outputs found

    Reaction Time Variability in Children Is Specifically Associated With Attention Problems and Regional White Matter Microstructure

    Get PDF
    Background Increased intraindividual variability (IIV) in reaction times (RTs) has been suggested as a key cognitive and behavioral marker of attention problems, but findings for other dimensions of psychopathology are less consistent. Moreover, while studies have linked IIV to brain white matter microstructure, large studies testing the robustness of these associations are needed. Methods We used data from the Adolescent Brain Cognitive Development (ABCD) Study baseline assessment to test the associations between IIV and psychopathology (n = 8622, age = 8.9–11.1 years) and IIV and white matter microstructure (n = 7958, age = 8.9–11.1 years). IIV was investigated using an ex-Gaussian distribution analysis of RTs in correct response go trials in the stop signal task. Psychopathology was measured by the Child Behavior Checklist and a bifactor structural equation model was performed to extract a general p factor and specific factors reflecting internalizing, externalizing, and attention problems. To investigate white matter microstructure, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity were examined in 23 atlas-based tracts. Results Increased IIV in both short and long RTs was positively associated with the specific attention problems factor (Cohen’s d = 0.13 and d = 0.15, respectively). Increased IIV in long RTs was also positively associated with radial diffusivity in the left and right corticospinal tract (both tracts, d = 0.12). Conclusions Using a large sample and a data-driven dimensional approach to psychopathology, the results provide novel evidence for a small but specific association between IIV and attention problems in children and support previous findings on the relevance of white matter microstructure for IIV.publishedVersio

    New insights into the dynamic development of the cerebral cortex in childhood and adolescence: Integrating macro- and microstructural MRI findings

    No full text
    Through dynamic transactional processes between genetic and environmental factors, childhood and adolescence involve reorganization and optimization of the cerebral cortex. The cortex and its development plays a crucial role for prototypical human cognitive abilities. At the same time, many common mental disorders appear during these critical phases of neurodevelopment. Magnetic resonance imaging (MRI) can indirectly capture several multifaceted changes of cortical macro- and microstructure, of high relevance to further our understanding of the neural foundation of cognition and mental health. Great progress has been made recently in mapping the typical development of cortical morphology. Moreover, newer less explored MRI signal intensity and specialized quantitative T2 measures have been applied to assess microstructural cortical development. We review recent findings of typical postnatal macro- and microstructural development of the cerebral cortex from early childhood to young adulthood. We cover studies of cortical volume, thickness, area, gyrification, T1-weighted (T1w) tissue contrasts such a grey/white matter contrast, T1w/T2w ratio, magnetization transfer and myelin water fraction. Finally, we integrate imaging studies with cortical gene expression findings to further our understanding of the underlying neurobiology of the developmental changes, bridging the gap between ex vivo histological- and in vivo MRI studies

    Timing-specific associations between individuals’ objective and subjective financial condition, depressive symptoms and brain structure: A prospective study from early childhood to young adulthood

    No full text
    This a secondary data preregistration using data from the Avon Longitudinal Study of Parents and Children. https://www.bristol.ac.uk/alspac/researchers/our-data

    Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents

    No full text
    Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n = 504, age = 3–21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development

    Testing relationships between multimodal modes of brain structural variation and age, sex and polygenic scores for neuroticism in children and adolescents

    No full text
    Human brain development involves spatially and temporally heterogeneous changes, detectable across a wide range of magnetic resonance imaging (MRI) measures. Investigating the interplay between multimodal MRI and polygenic scores (PGS) for personality traits associated with mental disorders in youth may provide new knowledge about typical and atypical neurodevelopment. We derived independent components across cortical thickness, cortical surface area, and grey/white matter contrast (GWC) (n = 2596, 3–23 years), and tested for associations between these components and age, sex and-, in a subsample (n = 878), PGS for neuroticism. Age was negatively associated with a single-modality component reflecting higher global GWC, and additionally with components capturing common variance between global thickness and GWC, and several multimodal regional patterns. Sex differences were found for components primarily capturing global and regional surface area (boys > girls), but also regional cortical thickness. For PGS for neuroticism, we found weak and bidirectional associations with a component reflecting right prefrontal surface area. These results indicate that multimodal fusion is sensitive to age and sex differences in brain structure in youth, but only weakly to polygenic load for neuroticism

    Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents

    No full text
    Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n= 504, age=3-21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development

    The importance of timing of socioeconomic disadvantage throughout development for depressive symptoms and brain structure

    No full text
    Prior studies have reported associations between socioeconomic disadvantage, brain structure and mental health outcomes, but the timing of these relations is not well understood. Using prospective longitudinal data from the Avon Longitudinal Study of Parents and Children (ALSPAC), this preregistered study examined whether socioeconomic disadvantage related differentially to depressive symptoms (n=3012-3530) and cortical and subcortical structures (n=460-733) in emerging adults, depending on the timing of exposure to socioeconomic disadvantage. Family income in early childhood and own income measured concurrently were both significantly related to depressive symptoms in emerging adulthood. Similar results were observed for perceived financial difficulties. In contrast, only family income in early childhood was associated with brain structure in emerging adulthood, with positive associations with intracranial volume and total and regional cortical surface area. The findings suggest that both objective and subjective aspects of one’s financial standing throughout development relate to depressive symptoms in adulthood, but that specifically early life family income is related to brain structural features in emerging adulthood. This suggests that associations between socioeconomic disadvantage and brain structure originate early in neurodevelopment, highlighting the role of timing of socioeconomic disadvantage

    Parental socioeconomic status is linked to cortical microstructure and language abilities in children and adolescents

    No full text
    Gradients in parental socioeconomic status (SES) are closely linked to important life outcomes in children and adolescents, such as cognitive abilities, school achievement, and mental health. Parental SES may also influence brain development, with several magnetic resonance imaging (MRI) studies reporting associations with youth brain morphometry. However, MRI signal intensity metrics have not been assessed, but could offer a microstructural correlate, thereby increasing our understanding of SES influences on neurobiology. We computed a parental SES score from family income, parental education and parental occupation, and assessed relations with cortical microstructure as measured by T1w/T2w ratio (n= 504, age=3-21 years). We found negative age-stabile relations between parental SES and T1w/T2w ratio, indicating that youths from lower SES families have higher ratio in widespread frontal, temporal, medial parietal and occipital regions, possibly indicating a more developed cortex. Effect sizes were small, but larger than for conventional morphometric properties i.e. cortical surface area and thickness, which were not significantly associated with parental SES. Youths from lower SES families had poorer language related abilities, but microstructural differences did not mediate these relations. T1w/T2w ratio appears to be a sensitive imaging marker for further exploring the association between parental SES and child brain development
    corecore