243 research outputs found

    Evidence for a Ru4+^{4+} Kondo Lattice in LaCu3_3Ru4_4O12_{12}

    Full text link
    Rare dd-electron derived heavy-fermion properties of the solid-solution series LaCu3_3Rux_xTi4x_{4-x}O12_{12} were studied for 1x41 \leq x \leq 4 by resistivity, susceptibility, specific-heat measurements, and magnetic-resonance techniques. The pure ruthenate (x=4x = 4) is a heavy-fermion metal characterized by a resistivity proportional to T2T^2 at low temperatures TT. The coherent Kondo lattice formed by the localized Ru 4dd electrons is screened by the conduction electrons leading to strongly enhanced effective electron masses. By increasing titanium substitution the Kondo lattice becomes diluted resulting in single-ion Kondo properties like in the paradigm 4f4f-based heavy-fermion compound Cex_xLa1x_{1-x}Cu2.05_{2.05}Si2_2 [M. Ocko {\em et al.}, Phys. Rev. B \textbf{64}, 195106 (2001)]. In LaCu3_3Rux_xTi4x_{4-x}O12_{12} the heavy-fermion behavior finally breaks down on crossing the metal-to-insulator transition close to x=2x = 2.Comment: 9 pages, 8 figure

    Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    Get PDF
    BACKGROUND: This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR) in intact, spontaneously breathing BALB/c mice. METHODS: Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF(50)), we determined early AR (EAR) to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL), dynamic compliance (Cdyn) and EF(50 )in another group of anesthetized, orotracheally intubated mice. RESULTS: With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p < 0.05 versus controls). Dose-response studies to aerosolized methacholine (MCh) were performed in the same animals 48 h later, showing that allergic mice relative to controls were distinctly more responsive (p < 0.05) and revealed acute airway inflammation as evidenced from increased eosinophils and lymphocytes in bronchoalveolar lavage. CONCLUSION: We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF(50 )method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice

    Expression of Xenobiotic Metabolizing Enzymes in Different Lung Compartments of Smokers and Nonsmokers

    Get PDF
    BACKGROUND: Cytochrome P450 monooxygenases (CYP) play an important role in the defense against inhaled toxicants, and expression of CYP enzymes may differ among various lung cells and tissue compartments. METHODS: We studied the effects of tobacco smoke in volunteers and investigated gene expression of 19 CYPs and 3 flavin-containing monooxygenases, as well as isoforms of gluthathione S-transferases (GST) and uridine diphosphate glucuronosyltransferases (UGT) and the microsomal epoxide hydrolase (EPHX1) in bronchoalveolar lavage cells and bronchial biopsies derived from smokers (n = 8) and nonsmokers (n = 10). We also investigated gene expression of nuclear transcription factors known to be involved in the regulation of xenobiotic metabolism enzymes. RESULTS: Gene expression of CYP1A1, CYP1B1, CYP2S1, GSTP1, and EPHX1 was induced in bronchoalveolar lavage cells of smokers, whereas expression of CYP2B6/7, CYP3A5, and UGT2A1 was repressed. In bronchial biopsies of smokers, CYP1A1, CYP1B1, CYP2C9, GSTP1, and GSTA2 were induced, but CYP2J2 and EPHX1 were repressed. Induction of CYP1A1 and CYP1B1 transcript abundance resulted in increased activity of the coded enzyme. Finally, expression of the liver X receptor and the glucocorticoid receptor was significantly up-regulated in bronchoalveolar lavage cells of smokers. CONCLUSIONS: We found gene expression of pulmonary xenobiotic metabolizing enzymes and certain key transcription factors to be regulated in bronchoalveolar lavage cells and bronchial biopsies of smokers. The observed changes demonstrate tissue specificity in xenobiotic metabolism, with likely implications for the metabolic activation of procarcinogens to ultimate carcinogens of tobacco smoke

    Surfactant Protein D modulates allergen particle uptake and inflammatory response in a human epithelial airway model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Allergen-containing subpollen particles (SPP) are released from whole plant pollen upon contact with water or even high humidity. Because of their size SPP can preferentially reach the lower airways where they come into contact with surfactant protein (SP)-D. The aim of the present study was to investigate the influence of SP-D in a complex three-dimensional human epithelial airway model, which simulates the most important barrier functions of the epithelial airway. The uptake of SPP as well as the secretion of pro-inflammatory cytokines was investigated.</p> <p>Methods</p> <p>SPP were isolated from timothy grass and subsequently fluorescently labeled. A human epithelial airway model was built by using human Type II-pneumocyte like cells (A549 cells), human monocyte derived macrophages as well as human monocyte derived dendritic cells. The epithelial cell model was incubated with SPP in the presence and absence of surfactant protein D. Particle uptake was evaluated by confocal microscopy and advanced computer-controlled analysis. Finally, human primary CD4<sup>+ </sup>T-Cells were added to the epithelial airway model and soluble mediators were measured by enzyme linked immunosorbent assay or bead array.</p> <p>Results</p> <p>SPP were taken up by epithelial cells, macrophages, and dendritic cells. This uptake coincided with secretion of pro-inflammatory cytokines and chemokines. SP-D modulated the uptake of SPP in a cell type specific way (e.g. increased number of macrophages and epithelial cells, which participated in allergen particle uptake) and led to a decreased secretion of pro-inflammatory cytokines.</p> <p>Conclusion</p> <p>These results display a possible mechanism of how SP-D can modulate the inflammatory response to inhaled allergen.</p

    Effect of Acute Ozone Induced Airway Inflammation on Human Sympathetic Nerve Traffic: A Randomized, Placebo Controlled, Crossover Study

    Get PDF
    Background: Ozone concentrations in ambient air are related to cardiopulmonary perturbations in the aging population. Increased central sympathetic nerve activity induced by local airway inflammation may be one possible mechanism. Methodology/Principal Findings: To elucidate this issue further, we performed a randomized, double-blind, cross-over study, including 14 healthy subjects (3 females, age 22-47 years), who underwent a 3 h exposure with intermittent exercise to either ozone (250 ppb) or clean air. Induced sputum was collected 3 h after exposure. Nineteen to 22 hours after exposure, we recorded ECG, finger blood pressure, brachial blood pressure, respiration, cardiac output, and muscle sympathetic nerve activity (MSNA) at rest, during deep breathing, maximum-inspiratory breath hold, and a Valsalva maneuver. While the ozone exposure induced the expected airway inflammation, as indicated by a significant increase in sputum neutrophils, we did not detect a significant estimated treatment effect adjusted for period on cardiovascular measurements. Resting heart rate (clean air: 59 +/- 62, ozone 60 +/- 62 bpm), blood pressure (clean air: 121 +/- 3/71 +/- 2 mmHg; ozone: 121 +/- 2/71 +/- 2mmHg), cardiac output (clean air: 7.42 +/- 0.29 mmHg; ozone: 7.98 +/- 0.60 l/min), and plasma norepinephrine levels (clean air: 213 +/- 21 pg/ml; ozone: 202 +/- 16 pg/ml), were similar on both study days. No difference of resting MSNA was observed between ozone and air exposure (air: 2362, ozone: 2362 bursts/min). Maximum MSNA obtained at the end of apnea (air: 44 +/- 4, ozone: 48 +/- 4 bursts/min) and during the phase II of the Valsalva maneuver (air: 64 +/- 5, ozone: 57 +/- 6 bursts/min) was similar. Conclusions/Significance: Our study suggests that acute ozone-induced airway inflammation does not increase resting sympathetic nerve traffic in healthy subjects, an observation that is relevant for environmental health. However, we can not exclude that chronic airway inflammation may contribute to sympathetic activation

    Effects of ultrafine particles on the allergic inflammation in the lung of asthmatics : results of a double-blinded randomized cross-over clinical pilot study

    Get PDF
    Background: Epidemiological and experimental studies suggest that exposure to ultrafine particles (UFP) might aggravate the allergic inflammation of the lung in asthmatics. Methods: We exposed 12 allergic asthmatics in two subgroups in a double-blinded randomized cross-over design, first to freshly generated ultrafine carbon particles (64 μg/m3; 6.1 ± 0.4 × 105 particles/cm3 for 2 h) and then to filtered air or vice versa with a 28-day recovery period in-between. Eighteen hours after each exposure, grass pollen was instilled into a lung lobe via bronchoscopy. Another 24 hours later, inflammatory cells were collected by means of bronchoalveolar lavage (BAL). (Trial registration: NCT00527462) Results: For the entire study group, inhalation of UFP by itself had no significant effect on the allergen induced inflammatory response measured with total cell count as compared to exposure with filtered air (p = 0.188). However, the subgroup of subjects, which inhaled UFP during the first exposure, exhibited a significant increase in total BAL cells (p = 0.021), eosinophils (p = 0.031) and monocytes (p = 0.013) after filtered air exposure and subsequent allergen challenge 28 days later. Additionally, the potential of BAL cells to generate oxidant radicals was significantly elevated at that time point. The subgroup that was exposed first to filtered air and 28 days later to UFP did not reveal differences between sessions. Conclusions: Our data demonstrate that pre-allergen exposure to UFP had no acute effect on the allergic inflammation. However, the subgroup analysis lead to the speculation that inhaled UFP particles might have a long-term effect on the inflammatory course in asthmatic patients. This should be reconfirmed in further studies with an appropriate study design and sufficient number of subjects

    Allergen-induced asthmatic responses modified by a GATA3-specific DNAzyme

    Get PDF
    BACKGROUND : The most prevalent phenotype of asthma is characterized by eosinophil-dominated inflammation that is driven by a type 2 helper T cell (Th2). Therapeutic targeting of GATA3, an important transcription factor of the Th2 pathway, may be beneficial. We evaluated the safety and efficacy of SB010, a novel DNA enzyme (DNAzyme) that is able to cleave and inactivate GATA3 messenger RNA (mRNA). METHODS : We conducted a randomized, double-blind, placebo-controlled, multicenter clinical trial of SB010 involving patients who had allergic asthma with sputum eosinophilia and who also had biphasic early and late asthmatic responses after laboratory-based allergen provocation. A total of 40 patients could be evaluated; 21 were assigned to receive 10 mg of SB010, and 19 were assigned to receive placebo, with each study drug administered by means of inhalation once daily for 28 days. An allergen challenge was performed before and after the 28-day period. The primary end point was the late asthmatic response as quantified by the change in the area under the curve (AUC) for forced expiratory volume in 1 second (FEV1). RESULTS : After 28 days, SB010 attenuated the mean late asthmatic response by 34%, as compared with the baseline response, according to the AUC for FEV1, whereas placebo was associated with a 1% increase in the AUC for FEV1 (P = 0.02). The early asthmatic response with SB010 was attenuated by 11% as measured by the AUC for FEV1, whereas the early response with placebo was increased by 10% (P = 0.03). Inhibition of the late asthmatic response by SB010 was associated with attenuation of allergen-induced sputum eosinophilia and with lower levels of tryptase in sputum and lower plasma levels of interleukin-5. Allergen-induced levels of fractional exhaled nitric oxide and airway hyperresponsiveness to methacholine were not affected by either SB010 or placebo. CONCLUSIONS : Treatment with SB010 significantly attenuated both late and early asthmatic responses after allergen provocation in patients with allergic asthma. Biomarker analysis showed an attenuation of Th2-regulated inflammatory responses
    corecore