106 research outputs found

    Bioactivity-Guided Investigation of the Anti-Inflammatory Activity of Hippophae rhamnoides Fruits

    Get PDF
    AbstractAccording to modern ethnobotanical records, the fruit of Hippophae rhamnoides is effective in the treatment of different allergic symptoms. In order to obtain pharmacological evidence for this observation, the fruit was investigated for anti-inflammatory activity using in vivo animal models. Aqueous and 70% MeOH extracts were tested in 48/80-induced rat paw edema assay after oral administration, and it was found that the 70% MeOH extract (500 mg/kg) reduced significantly edema volume (0.660 ± 0.082 mL vs. control 0.935 ± 0.041 mL). Extracts of different parts of the fruit (pulp, peel, seed) were investigated in the same assay, and the peel extract was shown to exhibit maximum edema-reducing effect (0.470 ± 0.124 mL vs. control 0.920 ± 0.111 mL). This extract was used to elucidate the mode of action. Different inflammation inducers (serotonin, histamine, dextran, bradykinin, and carrageenan) were applied in the rat paw model, but the extract inhibited only the compound 48/80 elicited inflammation. The active extract was then fractionated by solvent-solvent partitioning and chromatographic methods with the guidance of the 48/80-induced anti-inflammatory assay, and the main compounds responsible for the activity were identified as ursolic acid and oleanolic acid. Our data suggest that the activity is most probably based on a membrane stabilizing effect caused by the inhibition of degranulation of mast cells. Moreover, previously unknown 2,5-bis-aryl-3,4-dimethyltetrahydrofuran lignans, nectandrin B, fragransin A2, and saucernetindiol were isolated and identified from H. rhamnoides for the first time.</jats:p

    Biomimetic oxidized resveratrol metabolite mixtures

    Get PDF

    Oxidized Resveratrol Metabolites as Potent Antioxidants and Xanthine Oxidase Inhibitors

    Get PDF
    Resveratrol is a well-known natural polyphenol with a plethora of pharmacological activities. As a potent antioxidant, resveratrol is highly oxidizable and readily reacts with reactive oxygen species (ROS). Such a reaction not only leads to a decrease in ROS levels in a biological environment but may also generate a wide range of metabolites with altered bioactivities. Inspired by this notion, in the current study, our aim was to take a diversity-oriented chemical approach to study the chemical space of oxidized resveratrol metabolites. Chemical oxidation of resveratrol and a bioactivity-guided isolation strategy using xanthine oxidase (XO) and radical scavenging activities led to the isolation of a diverse group of compounds, including a chlorine-substituted compound (2), two iodine-substituted compounds (3 and 4), two viniferins (5 and 6), an ethoxy-substituted compound (7), and two ethoxy-substitute,0d dimers (8 and 9). Compounds 4, 7, 8, and 9 are reported here for the first time. All compounds without ethoxy substitution exerted stronger XO inhibition than their parent compound, resveratrol. By enzyme kinetic and in silico docking studies, compounds 2 and 4 were identified as potent competitive inhibitors of the enzyme, while compound 2 and the viniferins acted as mixed-type inhibitors. Further, compounds 2 and 9 had better DPPH scavenging activity and oxygen radical absorbing capacity than resveratrol. Our results suggest that the antioxidant activity of resveratrol is modulated by the effect of a cascade of chemically stable oxidized metabolites, several of which have significantly altered target specificity as compared to their parent compound
    • …
    corecore