27 research outputs found

    Materials for hydrogen-based energy storage - past, recent progress and future outlook

    Get PDF
    Globally, the accelerating use of renewable energy sources, enabled by increased efficiencies and reduced costs, and driven by the need to mitigate the effects of climate change, has significantly increased research in the areas of renewable energy production, storage, distribution and end-use. Central to this discussion is the use of hydrogen, as a clean, efficient energy vector for energy storage. This review, by experts of Task 32, “Hydrogen-based Energy Storage” of the International Energy Agency, Hydrogen TCP, reports on the development over the last 6 years of hydrogen storage materials, methods and techniques, including electrochemical and thermal storage systems. An overview is given on the background to the various methods, the current state of development and the future prospects. The following areas are covered; porous materials, liquid hydrogen carriers, complex hydrides, intermetallic hydrides, electrochemical storage of energy, thermal energy storage, hydrogen energy systems and an outlook is presented for future prospects and research on hydrogen-based energy storage

    Molecular and crystal structure of Sp-thymidin-3'-yl 4-thiothymidin-5'-yl methylphosphonate.

    No full text
    The molecular structure of one diastereomer of the dinucleoside methylphosphonate Tp(Me)sT (1) has been determined by X-ray diffraction methods. The crystal asymmetric unit contains one molecule of 1 and one methanol in an orthorhombic unit cell of dimensions a = 13.241(4), b = 13.844(3), c = 14.944(7) A, space group P2(1)2(1)2(1). Both pyrimidine bases in 1 are oriented anti relative to the 2'-deoxyribose rings, and the sugar conformations are 2E and 2(3)T in the 4-thiothymidine and thymidine moieties, respectively. The deoxyribose-phosphonate backbone has an extended conformation with the bases completely unstacked and almost parallel. The absolute configuration at the phosphorus center in 1 is Sp

    Air‐Metal Hydride Battery Construction and Evaluation

    No full text

    Ni‐MH Battery Electrodes Made by a Dry Powder Process

    No full text
    corecore