104 research outputs found

    New findings on the d(TGGGAG) sequence: Surprising anti-HIV-1 activity

    Get PDF
    The biological relevance of tetramolecular G-quadruplexes especially as anti-HIV agents has been extensively reported in the literature over the last years. In the light of our recent results regarding the slow G-quadruplex folding kinetics of ODNs based on d(TGGGAG) sequence, here, we report a systematic anti-HIV screening to investigate the impact of the G-quadruplex folding on their anti-HIV activity. In particular, varying the single stranded concentrations of ODNs, it has been tested a pool of ODN sample solutions with different G-quadruplex concentrations. The anti-HIV assays have been designed favouring the limited kinetics involved in the tetramolecular G4-association based on the d(TGGGAG) sequence. Aiming to determine the stoichiometry of G-quadruplex structures in the same experimental conditions of the anti-HIV assays, a native gel electrophoresis was performed. The gel confirmed the G-quadruplex formation for almost all sample solutions while showing the formation of high order G4 structures for the more concentrated ODNs solutions. The most significant result is the discovery of a potent anti-HIV activity of the G-quadruplex formed by the natural d(TGGGAG) sequence (IC50 = 14 nM) that, until now, has been reported to be completely inactive against HIV infection

    High mannose-specific lectin Msl mediates key interactions of the vaginal Lactobacillus plantarum isolate CMPG5300

    Get PDF
    To characterize the interaction potential of the human vaginal isolate Lactobacillus plantarum CMPG5300, its genome was mined for genes encoding lectin-like proteins. cmpg5300.05_29 was identified as the gene encoding a putative mannose-binding lectin. Phenotypic analysis of a gene knock-out mutant of cmpg5300.05_29 showed that expression of this gene is important for auto-aggregation, adhesion to the vaginal epithelial cells, biofilm formation and binding to mannosylated glycans. Purification of the predicted lectin domain of Cmpg5300.05_29 and characterization of its sugar binding capacity confirmed the specificity of the lectin for high-mannose glycans. Therefore, we renamed Cmpg5300.05_29 as a mannose-specific lectin (Msl). The purified lectin domain of Msl could efficiently bind to HIV-1 glycoprotein gp120 and Candida albicans, and showed an inhibitory activity against biofilm formation of uropathogenic Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. Thus, using a combination of molecular lectin characterization and functional assays, we could show that lectin-sugar interactions play a key role in host and pathogen interactions of a prototype isolate of the vaginal Lactobacillus microbiota

    N-alpha-Aminoacyl Colchicines as Promising Anticancer Agents

    Get PDF
    Background: In the last years, many efforts have been made to find colchicine derivatives with reduced toxicity. Additionally, the deregulation of amino acid uptake by cancer cells provides an opportunity to improve anticancer drug effectiveness. Objective: To design new colchicine derivatives with reduced cytotoxicity and enhanced selectivity by means of introducing aminoacyl groups. Methods: 34 colchicine analogues bearing L- and D-amino acid pendants were synthetized and characterized by NMR, IR and MS techniques. Cytotoxicity and antimitotic properties were assessed by spectrophotometry and cell cycle assays. Oncogene downregulation was studied by RTqPCR whereas in vivo studies were performed in SCID mice. Results: Compounds exhibit high antiproliferative activities at the nanomolar level while being, in general, less cytotoxic than colchicine. Most compounds inhibit the polymerization of tubulin in a way similar to colchicine itself, with L-amino acid derivatives being the most active in the inhibition of tubulin polymerization. All selected compounds caused cell cycle arrest at the G2/M phase when tested at 1 μM. More specifically, Boc-L-proline derivative 6 arrested half of the population and showed one of the highest Selectivity Indexes. Derivatives 1 (Boc-glycine), 27 (D-leucine) and 31 (Boc-glycine-glycine) proved fairly active in downregulating the expression of the c-Myc, hTERT and VEGF oncogenes, with compound 6 (Boc-L-proline) having the highest activity. This compound was shown to exert a potent anti-tumor effect when administered intraperitoneally (LD50 > 100 mg/kg for 6, compared with 2.5 mg/kg for colchicine). Conclusion: Compound 6 offers an opportunity to be used in cancer therapy with less toxicity problems than colchicine

    The Transcriptional Repressor Kaiso Localizes at the Mitotic Spindle and Is a Constituent of the Pericentriolar Material

    Get PDF
    Kaiso is a BTB/POZ zinc finger protein known as a transcriptional repressor. It was originally identified through its in vitro association with the Armadillo protein p120ctn. Subcellular localization of Kaiso in cell lines and in normal and cancerous human tissues revealed that its expression is not restricted to the nucleus. In the present study we monitored Kaiso's subcellular localization during the cell cycle and found the following: (1) during interphase, Kaiso is located not only in the nucleus, but also on microtubular structures, including the centrosome; (2) at metaphase, it is present at the centrosomes and on the spindle microtubules; (3) during telophase, it accumulates at the midbody. We found that Kaiso is a genuine PCM component that belongs to a pericentrin molecular complex. We analyzed the functions of different domains of Kaiso by visualizing the subcellular distribution of GFP-tagged Kaiso fragments throughout the cell cycle. Our results indicate that two domains are responsible for targeting Kaiso to the centrosomes and microtubules. The first domain, designated SA1 for spindle-associated domain 1, is located in the center of the Kaiso protein and localizes at the spindle microtubules and centrosomes; the second domain, SA2, is an evolutionarily conserved domain situated just before the zinc finger domain and might be responsible for localizing Kaiso towards the centrosomal region. Constructs containing both SA domains and Kaiso's aminoterminal BTB/POZ domain triggered the formation of abnormal centrosomes. We also observed that overexpression of longer or full-length Kaiso constructs led to mitotic cell arrest and frequent cell death. Knockdown of Kaiso accelerated cell proliferation. Our data reveal a new target for Kaiso at the centrosomes and spindle microtubules during mitosis. They also strongly imply that Kaiso's function as a transcriptional regulator might be linked to the control of the cell cycle and to cell proliferation in cancer

    Tryptophan dendrimers that inhibit HIV replication, prevent virus entry and bind to the HIV envelope glycoproteins gp120 and gp41

    Get PDF
    Dendrimers containing from 9 to 18 tryptophan residues at the peryphery have been efficiently synthesized and tested against HIV replication. These compounds inhibit an early step of the replicative cycle of HIV, presumably virus entry into its target cell. Our data suggest that HIV inhibition can be achieved by the preferred interaction of the compounds herein described with glycoproteins gp120 and gp41 of the HIV envelope preventing interaction between HIV and the (co)receptors present on the host cells. The results obtained so far indicate that 9 tryptophan residues on the periphery are sufficient for efficient gp120/gp41 binding and anti-HIV activity.This work has been supported by the Spanish MINECO (project SAF2012-39760-C02, co-financed by the FEDER programme); Plan Nacional de Cooperacion Público-Privada, subprograma INNPACTO (project IPT-2012-0213-060000, co-financed by the FEDER programme), the Comunidad de Madrid (BIPEDD2-CM-S2010/BMDE2457) and by “The Centers of Excellence” of the K.U.Leuven (EF-05/ 15 and PF-10/18). The Spanish MICINN/MINECO are also acknowledged for a grant to E. Rivero-BucetaPeer Reviewe

    FO‐SPR biosensor calibrated with recombinant extracellular vesicles enables specific and sensitive detection directly in complex matrices

    Get PDF
    Extracellular vesicles (EVs) have drawn huge attention for diagnosing myriad of diseases, including cancer. However, the EV detection and analyses procedures often lack much desired sample standardization. To address this, we used well-characterized recombinant EVs (rEVs) for the first time as a biological reference material in developing a fiber optic surface plasmon resonance (FO-SPR) bioassay. In this context, EV binding on the FO-SPR probes was achieved only with EV-specific antibodies (e.g. anti-CD9 and anti-CD63) but not with non-specific anti-IgG. To increase detection sensitivity, we tested six different combinations of EV-specific antibodies in a sandwich bioassay. Calibration curves were generated with two most effective combinations (anti-CD9/(B)anti-CD81 and anti-CD63/(B)anti-CD9), resulting in 10(3) and 10(4) times higher sensitivity than the EV concentration in human blood plasma from healthy or cancer patients, respectively. Additionally, by using anti-CD63/(B)anti-CD9, we detected rEVs spiked in cell culture medium and HEK293 endogenous EVs in the same matrix without any prior EV purification or enrichment. Lastly, we selectively captured breast cancer cell EVs spiked in blood plasma using anti-EpCA M antibody on the FO-SPR surface. The obtained results combined with FO-SPR real-time monitoring, fast response time and ease of operation, demonstrate its outstanding potential for EV quantification and analysis

    Antivascular and antitumor properties of the tubulin-binding chalcone TUB091

    Get PDF
    We investigated the microtubule-destabilizing, vascular-targeting, anti-tumor and anti-metastatic activities of a new series of chalcones, whose prototype compound is (E)-3-(3’’-amino-4’’-methoxyphenyl)-1-(5’-methoxy-3’,4’-methylendioxyphenyl)- 2-methylprop-2-en-1-one (TUB091). X-ray crystallography showed that these chalcones bind to the colchicine site of tubulin and therefore prevent the curved-tostraight structural transition of tubulin, which is required for microtubule formation. Accordingly, TUB091 inhibited cancer and endothelial cell growth, induced G2/M phase arrest and apoptosis at 1-10 nM. In addition, TUB091 displayed vascular disrupting effects in vitro and in the chicken chorioallantoic membrane (CAM) assay at low nanomolar concentrations. A water-soluble L-Lys-L-Pro derivative of TUB091 (i.e. TUB099) showed potent antitumor activity in melanoma and breast cancer xenograft models by causing rapid intratumoral vascular shutdown and massive tumor necrosis. TUB099 also displayed anti-metastatic activity similar to that of combretastatin A4-phosphate. Our data indicate that this novel class of chalcones represents interesting lead molecules for the design of vascular disrupting agents (VDAs). Moreover, we provide evidence that our prodrug approach may be valuable for the development of anti-cancer drugs.M-DC thanks the Fondo Social Europeo (FSE) and the JAE Predoc Programme for a predoctoral fellowship. This work has received the Ramón Madroñero award for young researchers (to M-DC and OB) in the XVII call www.impactjournals.com/oncotarget 17 Oncotarget sponsored by the Spanish Society of Medicinal Chemistry (SEQT). This project has been supported by the Spanish Ministerio de Economia y Competitividad (SAF2012- 39760-C02-01 to M-JC, M-JP-P, SV and E-MP; and BIO2013-42984-R to JFD), Comunidad de Madrid (BIPEDD2; ref. P2010/BMD-2457 to M-JC and J-FD), the Swiss National Science Foundation (310030B_138659 and 31003A_166608; to MOS). The authors acknowledge networking contribution by the COST Action CM1407 “Challenging organic syntheses inspired by nature - from natural products chemistry to drug discovery” and COST action CM1470.Peer reviewe

    Anti-HIV-1 activity of a tripodal receptor that recognizes mannose oligomers

    Get PDF
    The glycoprotein gp120 of the HIV-1 viral envelope has a high content in mannose residues, particularly ¿-1,2-mannose oligomers. Compounds that interact with these high-mannose type glycans may disturb the interaction between gp120 and its (co)receptors and are considered potential anti-HIV agents. Previously, we demonstrated that a tripodal receptor (1), with a central scaffold of 1,3,5-triethylbenzene substituted with three 2,3,4-trihydroxybenzoyl groups, selectively recognizes ¿-1,2-mannose polysaccharides. Here we present additional studies to determine the anti-HIV-1 activity and the mechanism of antiviral activity of this compound. Our studies indicate that 1 shows anti-HIV-1 activity in the low micromolar range and has pronounced gp120 binding and HIV-1 integrase inhibitory capacity. However, gp120 binding rather than integrase inhibition seems to be the primary mechanism of antiviral activity of 1.The Spanish MICINN/MINECO (Project: SAF 201239760-C02-01, co-financed by the FEDER programme); Plan Nacional de Cooperación Público-Privada. Subprograma INNPACTO (IPT-2012-0213-060000, co-financed by the FEDER programme) and the Comunidad de Madrid (BIPEDD2-CM-S2010/BMD-2457) are acknowledged for fi nancial support. The Spanish ICINN/MINECCO is also acknowledged for a grant to E. Rivero-Buceta. We thank Leentje Persoons, Frieda De Meyer, Leen Ingels, Stijn Delmotte, Katrien Geerts, and Inge Vliegen for excellent technical assistance. Financial support of KU Leuven (GOA 10/14; PF 10/18) and the FWO (G-0528.12N) was provided for the antiviral experiments. The integrase studies were supported by the Center for Cancer Research, the Intramural Program of the National Cancer Institute,NIH (Z01-BC 007333).Peer Reviewe

    Double Arylation of the Indole Side Chain of Tri- and Tetrapodal Tryptophan Derivatives Renders Highly Potent HIV‑1 and EV-A71 Entry Inhibitors

    Get PDF
    This work is dedicated to Prof. Jan Balzarini (KU Leuven, Belgium), on the occasion of his retirement, in recognition of his constant encouragement and exemplary dedication to virology.We have recently described a new generation of potent human immunodeficiency virus (HIV) and EV-A71 entry inhibitors. The prototypes contain three or four tryptophan (Trp) residues bearing an isophthalic acid moiety at the C2 position of each side-chain indole ring. This work is now extended by both shifting the position of the isophthalic acid to C7 and synthesizing doubly arylated C2/C7 derivatives. The most potent derivative (50% effective concentration (EC50) HIV-1, 6 nM; EC50 EV-A71, 40 nM), 33 (AL-518), is a C2/C7 doubly arylated tetrapodal compound. Its superior anti-HIV potency with respect to the previous C2- arylated prototype is in consonance with its higher affinity for the viral gp120. 33 (AL-518) showed comparable antiviral activities against X4 and R5 HIV-1 strains and seems to interact with the tip and base of the gp120 V3 loop. Taken together, these findings support the interest in 33 (AL-518) as a useful new prototype for anti-HIV/EV71 drug development.This work was supported by the Spanish MICINN (Projects PID2019-104070RB-C21 and PID2019-104070RB-C22), the Spanish Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC, Projects CSIC-PIE-201980E100 and CSICPIE- 201980E028), “The Centers of Excellence” of the KU Leuven (EF-05/15 and PF-10/18), EU FP7 (FP7/2007-2013) Project EUVIRNA (Grant 408 Agreement 264286), EU FP7 SILVER (Contract HEALTH-F3-2010-260644), a grant from the Belgian Interuniversity Attraction Poles (IAP) Phase VII− P7/45 (BELVIR), and the EU FP7 Industry-Academia Partnerships and Pathways Project AIROPICO. Spanish MEC/MINECO is also acknowledged for grants to B.M.-G. and O.M.-M. and the China Scholarship Council (CSC) (Grant 201403250056) for a grant to L.S. The authors also thank Charlotte Vanderheydt, Evelyne Van Kerckhove, Caroline Collard, Kim Donchers, and Sandra Claes for help with the processing of the antiviral data. This work has been awarded the Janssen (XVIII call) and Esteve (XIX call) prizes within the “Prizes for Young Researchers of the Spanish Society of Medicinal Chemistry (SEQT).”Peer reviewe
    corecore