15 research outputs found

    A mechanism for the suppression of homologous recombination in G1 cells

    Get PDF
    DNA repair by homologous recombination (HR)(1) is highly suppressed in G1 cells(2,3) to ensure that mitotic recombination occurs solely between sister chromatids(4). Although many HR factors are cell cycle-regulated, the identity of the events that are both necessary and sufficient to suppress recombination in G1 cells is unknown. Here we report that the cell cycle controls the interaction of BRCA1 with PALB2-BRCA2 in order to constrain BRCA2 function to the S/G2 phases. We found that the BRCA1-interaction site on PALB2 is targeted by an E3 ubiquitin ligase composed of KEAP1, a PALB2-interacting protein(5), in complex with CUL3-RBX1(6). PALB2 ubiquitylation suppresses its interaction with BRCA1 and is counteracted by the deubiquitylase USP11, which is itself under cell cycle control. Restoration of the BRCA1-PALB2 interaction combined with the activation of DNA end resection is sufficient to induce HR in G1, as measured by RAD51 recruitment, unscheduled DNA synthesis and a CRISPR/Cas9-based gene targeting assay. We conclude that the mechanism prohibiting HR in G1 minimally consists of the suppression of DNA end resection coupled to a multi-step block to BRCA2 recruitment to DNA damage sites that involves the inhibition of BRCA1-PALB2-BRCA2 complex assembly. We speculate that the ability to induce HR in G1 cells with defined factors could spur the development of gene targeting applications in non-dividing cells

    The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer

    Full text link
    BRCA1/2-mutated cancer cells adapt to the genome instability caused by their deficiency in homologous recombination (HR). Identification of these adaptive mechanisms may provide therapeutic strategies to target tumors caused by the loss of these genes. In the present study, we report genome-scale CRISPR-Cas9 synthetic lethality screens in isogenic pairs of BRCA1- and BRCA2-deficient cells and identify CIP2A as an essential gene in BRCA1- and BRCA2-mutated cells. CIP2A is cytoplasmic in interphase but, in mitosis, accumulates at DNA lesions as part of a complex with TOPBP1, a multifunctional genome stability factor. Unlike PARP inhibition, CIP2A deficiency does not cause accumulation of replication-associated DNA lesions that require HR for their repair. In BRCA-deficient cells, the CIP2A-TOPBP1 complex prevents lethal mis-segregation of acentric chromosomes that arises from impaired DNA synthesis. Finally, physical disruption of the CIP2A-TOPBP1 complex is highly deleterious in BRCA-deficient tumors, indicating that CIP2A represents an attractive synthetic lethal therapeutic target for BRCA1- and BRCA2-mutated cancers

    EXO1 protects BRCA1-deficient cells against toxic DNA lesions

    Get PDF
    Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors

    ATM and CDK2 control chromatin remodeler CSB to inhibit RIF1 in DSB repair pathway choice

    Get PDF
    Cockayne syndrome group B protein (CSB) is a multifunctional chromatin remodeler involved in double-strand break repair. Here the authors investigate the molecular post-translational signals regulating CSB activity

    Chemo-phosphoproteomic profiling with ATR inhibitors berzosertib and gartisertib uncovers new biomarkers and DNA damage response regulators

    No full text
    The ATR kinase protects cells against DNA damage and replication stress and represents a promising anti-cancer drug target. The ATR inhibitors (ATRi) berzosertib and gartisertib are both in clinical trials for the treatment of advanced solid tumours as monotherapy or in combination with genotoxic agents. We carried out quantitative phospho-proteomic screening for ATR biomarkers that are highly sensitive to berzosertib and gartisertib, using an optimized mass spectrometry pipeline. Screening identified a range of novel ATR-dependent phosphorylation events, which were grouped into three broad classes: i) targets whose phosphorylation is highly sensitive to ATRi and which could be the next generation of ATR biomarkers; ii) proteins with known genome maintenance roles not previously known to be regulated by ATR; iii) novel targets whose cellular roles are unclear. Class iii targets represent candidate DNA damage response proteins and, with this in mind, proteins in this class were subjected to secondary screening for recruitment to DNA damage sites. We show that one of the proteins recruited, SCAF1, interacts with RNAPII in a phospho-dependent manner and recruitment requires PARP activity and interaction with RNAPII. We also show that SCAF1 deficiency partly rescues RAD51 loading in cells lacking the BRCA1 tumour suppressor. Taken together these data reveal potential new ATR biomarkers and new genome maintenance factors

    Expression of the BRCA1 complex member BRE predicts disease free survival in breast cancer.

    Get PDF
    Item does not contain fulltextBreast cancer is one of the leading causes of cancer mortality in women. Recent advances in gene expression profiling have indicated that breast cancer is a heterogeneous disease and the current prognostication using clinico-pathological features is not sufficient to fully predict therapy response and disease outcome. In this retrospective study, we show that expression levels of BRE, which encodes a member of the BRCA1 DNA damage repair complex, predicted disease-free survival (DFS) in non-familial breast cancer patients. The predictive value of BRE expression depended on whether patients received radiotherapy as a part of their primary treatment. In radiotherapy-treated patients, high BRE expression predicted a favorable DFS (hazard ratio (HR) = 0.47, 95 % confidence interval (CI) = 0.28-0.78, p = 0.004), while in non-treated patients, high BRE expression predicted an adverse prognosis (HR = 2.59, 95 % CI = 1.00-6.75, p = 0.05). Among radiotherapy-treated patients, the prognostic impact of BRE expression was confined to patients with smaller tumors (HR = 0.23, 95 % CI = 0.068-0.75, p = 0.015) and it remained an independent factor after correction for the other prognostic factors age, tumor size, lymph node involvement, and histological grade (HR = 0.50, CI = 0.27-0.90, p = 0.021). In addition, high BRE expression predicted a favorable relapse-free survival in a publicly available dataset of 2,324 breast cancer patients (HR = 0.59, CI = 0.51-0.68, p < 0.001). These data indicate that BRE is an interesting candidate for future functional studies aimed at developing targeted therapies.1 augustus 201

    ELOF1 is a transcription-coupled DNA repair factor that directs RNA polymerase II ubiquitylation

    No full text
    Cells employ transcription-coupled repair (TCR) to eliminate transcription-blocking DNA lesions. DNA damage-induced binding of the TCR-specific repair factor CSB to RNA polymerase II (RNAPII) triggers RNAPII ubiquitylation of a single lysine (K1268) by the CRL4CSA ubiquitin ligase. How CRL4CSA is specifically directed towards K1268 is unknown. Here, we identify ELOF1 as the missing link that facilitates RNAPII ubiquitylation, a key signal for the assembly of downstream repair factors. This function requires its constitutive interaction with RNAPII close to K1268, revealing ELOF1 as a specificity factor that binds and positions CRL4CSA for optimal RNAPII ubiquitylation. Drug–genetic interaction screening also revealed a CSB-independent pathway in which ELOF1 prevents R-loops in active genes and protects cells against DNA replication stress. Our study offers key insights into the molecular mechanisms of TCR and provides a genetic framework of the interplay between transcriptional stress responses and DNA replication
    corecore