25 research outputs found

    Keinotekoiset makeutusaineet ja perfluoratut alkyylihapot vesiympäristössä

    Get PDF
    The newly detected chemicals, the environmental distribution, fate, and effects in the environment of which are not well known, are called emerging compounds. Artificial sweeteners are one group of emerging compounds. The consumption of artificial sweeteners is high, and because they do not significantly metabolise, all that is consumed finds its way to wastewater treatment plants. Two artificial sweeteners, acesulfame and sucralose, do not degrade in wastewater treatment either, leading to elevated concentrations in the receiving water bodies. Another group of emerging compounds is perfluoroalkyl acids. They have been used both in industry and consumer products since the 1950s. The fluorine-carbon chain of perfluoroalkyl acids makes them extremely resistant to biological, chemical and physical degradation. They are ubiquitous in the environment and are suspected to be carsinogenic, immunotoxic and to interfere with reproduction. The aim of this study was to add to knowledge about the environmental distribution, fate and effects of artificial sweeteners and perfluoroalkyl acids. The occurrence of artificial sweeteners and perfluoroalkyl compounds was surveyed in surface waters. Wastewater effluents and sludge, storm water, and landfill leachate were analysed to evaluate the fluxes of perfluoroalkyl acids into the aquatic environment. Artificial sweeteners and perfluorooctanoic acid were irradiated under artificial sun to investigate their potential to transform via direct and indirect photochemical reactions in surface waters and ultraviolet radiation and during germicidal ultraviolet water treatment. Furthermore, Daphnia magna were exposed to artificial sweeteners to evaluate the ecotoxicological effects. It was discovered that artificial sweeteners and perfluoroalkyl acids are ubiquitous in the Finnish aquatic environment. Of the studied emission sources, wastewater effluents were the most important source of perfluoroalkyl acids in environmental waters. Based on the irradiation of perfluorooctanoic acid with a solar simulator, perfluorocarboxylic acids do not transform via direct or indirect photochemical reactions in the environment. Although a decrease in acesulfame was observed under irradiation with artificial sun, the photolytic half-life in surface water is at least one year. The photolytic half-lives of the other sweeteners were estimated to be 3 to 6 years. The ecotoxicological tests suggest that cyclamic acid might hinder the reproduction of Daphnia magna. Perfluorocarboxylic acids, sucralose and acesulfame are persistent and ubiquitous in surface waters.Kemikaalien määrä on lisääntynyt merkittävästi viime vuosikymmeninä, ja ympäristöstä löydetään jatkuvasti kemikaaleja, joita ei ole aikaisemmin havaittu. Näitä kemikaaleja, joiden levinneisyydestä, kohtalosta ja vaikutuksista ympäristössä tiedetään hyvin vähän tai ei lainkaan, kutsutaan nouseviksi aineiksi. Tällaisia yhdisteitä ovat muun muassa keinotekoiset makeutusaineet ja perfluoratut alkyylihapot. Kalorittomat makeutusaineet asesulfaami, sukraloosi, syklaamihappo ja sakariini eivät juurikaan metaboloidu elimistössä. Asesulfaami ja sukraloosi eivät myöskään hajoa jätevedenpuhdistamoilla. Koska makeutusaineiden käyttömäärät ovat suuria, niitä päätyy puhdistettujen jätevesien mukana merkittäviä määriä vastaanottaviin vesistöihin. Perfluorattuja alkyylihappoja on käytetty teollisuudessa ja kuluttajatuotteissa 1950-luvulta lähtien. Perfluoratut yhdisteet ovat erittäin pysyviä vahvan fluori-hiilisidoksen ansiosta. Reagoimattomuudestaan huolimatta niiden epäillään olevan muun muassa karsinogeenisia, immunotoksisia ja lisääntymistervettä häiritseviä aineita. Tämän väitöskirjan tarkoitus oli selvittää keinotekoisten makeutusaineiden ja perfluorattujen alkyylihappojen esiintymistä, pysyvyyttä ja vaikutuksia vesiympäristössä. Yhdisteiden levinneisyydestä Suomessa on hyvin vähän tietoa, minkä vuoksi työssä kartoitettiin niiden pitoisuuksia pintavesissä. Lisäksi selvitettiin jätevesien, lietteen, kaatopaikan suotoveden ja huleveden merkitystä perfluorattujen alkyyliyhdisteiden päästölähteinä. Auringonvalon kykyä hajottaa pintavesiin päätyneitä perfluorattuja karboksyylihappoja ja keinotekoisia makeutusaineita tutkittiin keinoauringon avulla. Tutkittavat yhdisteet altistettiin myös ultraviolettisäteilylle, jotta saatiin tietoa niiden käyttäytymisestä vedenpuhdistuksessa. Lisäksi arvioitiin keinotekoisten makeutusaineiden vaikutuksia vesikirpuille ekotoksikologisten kokeiden avulla. Keinotekoisia makeutusaineita ja perfluorattuja alkyylihappoja esiintyy laajalti pintavesissä. Perfluorattujen alkyylihappojen merkittävimmät päästöt tulevat Suomessa yhdyskuntajätevedenpuhdistamoilta. Keinoauringolla tehtyjen kokeiden perusteella perfluoratut karboksyylihapot ja makeutusaineista sukraloosi, syklaamihappo ja sakariini eivät hajoa suoran tai epäsuoran valokemiallisen reaktion avulla ympäristössä. Asesulfaamin valokemialliseksi puoliintumisajaksi pintavedessä arvioitiin vähintään yksi vuosi. Ekotoksisuustestien perusteella keinotekoisista makeutusaineista syklaamihappo saattaa haitata vesikirppujen lisääntymistä

    Perfluorattujen alkyyliyhdisteiden ympäristötutkimukset ja riskinarviointi

    Get PDF
    Tässä raportissa arvioidaan sammutusvaahtojen käytön seurauksena maaperään päässeiden per- ja polyfluorattujen alkyyliyhdisteiden (PFAS) ympäristökäyttäytymistä ja -riskejä neljällä paloharjoitusalueella (Kuopio, Joroinen, Joensuu ja Porvoo). Harjoitusalueiden ympäristötutkimuksissa ja niihin perustuvissa kohdearvioinneissa tarkastellaan erityisesti PFAS-yhdisteiden kulkeutumista ja siitä aiheutuvia riskejä vesiympäristölle ja pohjaveden käytölle. Hankkeen tulokset vahvistavat kansainvälisiin tutkimuksiin pohjautuvaa käsitystä PFAS-yhdisteiden esiintymisestä ja ympäristökäyttäytymisestä sammutusvaahtojen käyttökohteissa. Raportissa annetaan esimerkkejä ja yleisiä suosituksia mm. kohdetutkimuksissa ja riskinarvioinnissa sovellettavista menetelmistä sekä PFAS-yhdisteiden laboratoriomäärityksistä. Lisäksi raportissa esitetään arvio PFAS-yhdisteiden aiheuttamista riskeistä sekä suositukset tarvittavista jatkotoimista hankkeen tutkimuskohteissa

    PFASs in Finnish rivers and fish and the loading of PFASs to the Baltic Sea

    Get PDF
    The concentrations of per- and polyfluoroalkyl substances (PFASs) in the Finnish aquatic environment were measured in riverine waters and in inland, coastal and open sea fish. In addition, the PFAS load to the Baltic Sea from 11 rivers was calculated. Measurements show that PFASs, including restricted perfluorooctane sulfonic acid (PFOS), are widely present in the Finnish aquatic environment. At three out of 45 sampling sites, the concentration of PFOS in fish exceeded the environmental quality standard (EQS) of the Water Framework Directive (WFD). The annual average (AA) ∑23PFAS concentration in surface waters ranged from 1.8 to 42 ng L−1 and the concentration of PFOS exceeded the AA-EQS in three out of 13 water bodies. In European perch (Perca fluviatilis) and Baltic herring (Clupea harengus membras), the ∑PFAS concentration ranged from 0.98 to 1 µg kg−1 f.w. (fresh weight) and from 0.2 to 2.4 µg kg−1 f.w., respectively. The highest concentrations in both surface water and fish were found in waters of southern Finland. The riverine export of ∑10PFAS to the Baltic Sea from individual rivers ranged from 0.4 kg yr−1 to 18 kg yr−1. PFAS concentrations in fish of point-source-polluted sites and coastal sites were higher compared to fish of open sea or diffusely polluted sites. The PFAS profiles in surface waters of background sites were different from other sites. This study shows that PFASs are widely found in the Finnish aquatic environment. Different PFAS profiles in samples from background areas and densely populated areas indicate diverse sources of PFASs. Although atmospheric deposition has a substantial influence on PFAS occurrence in remote areas, it is not the dominant source of all PFASs to the aquatic environment of Finland. Rather, wastewaters and presumably contaminated land areas are major sources of PFASs to this aquatic environment

    Bacterial diversity and predicted enzymatic function in a multipurpose surface water system – from wastewater effluent discharges to drinking water production

    Get PDF
    Funding Information: The authors would like to express special acknowledgment to the CONPAT research team at the Finnish Institute for Health and Welfare, Finnish Environment Institute, and VATT Institute for Economic Research. Special thanks go to Tiina Heiskanen and Laura Wessels for extracting the nucleic acids. The Water Protection Association of the River Kokem?enjoki (KVVY) is acknowledged for surface water and wastewater sampling. Funding Information: Academy of Finland (grant number 263451) and Kaute Foundation (grant number 20190366) are acknowledged for providing funds for the project establishment and manuscript writing, respectively. Funding Information: The authors declare that they have no competing interests. This work was in part supported by the U.S. Environmental Protection Agency (EPA), and any opinions expressed do not reflect the views of the agency; therefore, no official endorsement should be inferred. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use. Publisher Copyright: © 2021, The Author(s).Background Rivers and lakes are used for multiple purposes such as for drinking water (DW) production, recreation, and as recipients of wastewater from various sources. The deterioration of surface water quality with wastewater is well-known, but less is known about the bacterial community dynamics in the affected surface waters. Understanding the bacterial community characteristics -from the source of contamination, through the watershed to the DW production process-may help safeguard human health and the environment. Results The spatial and seasonal dynamics of bacterial communities, their predicted functions, and potential health-related bacterial (PHRB) reads within the Kokemaenjoki River watershed in southwest Finland were analyzed with the 16S rRNA-gene amplicon sequencing method. Water samples were collected from various sampling points of the watershed, from its major pollution sources (sewage influent and effluent, industrial effluent, mine runoff) and different stages of the DW treatment process (pre-treatment, groundwater observation well, DW production well) by using the river water as raw water with an artificial groundwater recharge (AGR). The beta-diversity analysis revealed that bacterial communities were highly varied among sample groups (R = 0.92, p = 13%) than in other groups (= 13%) than in others (Peer reviewe

    Haitallisten orgaanisten yhdisteiden esiintyminen yhdyskuntajätevedenpuhdistamoilla ja kaatopaikoilla

    Get PDF
    Kemikaalien riskinhallinnan tavoitteena on tunnistaa markkinoilla olevista tuhansista kemikaaleista ennakolta sellaiset aineet, jotka voivat aiheuttaa haittaa ympäristössä, sekä varmistaa, että niiden käyttö on riskitöntä. Haitallisten aineiden riskinhallinnan ongelmana ovat puutteelliset tiedot aineiden ominaisuuksista, käytöstä, päästöistä sekä esiintymisestä ympäristössä. Kansallisen vaarallisia kemikaaleja koskevan ohjelman yhtenä tavoitteena on parantaa tätä tietopohjaa. Kartoituksella saatiin tietoa yhdyskuntajäteveden ja -lietteen sekä kaatopaikkojen suotoveden sisältämistä kemikaaleista. Kartoitus painottui POP-yhdisteisiin ja vaarallisten aineiden asetuksen mukaisiin haitallisiin ja vaarallisiin aineisiin. Useita tutkittuja aineita päätyy vesiympäristöön puhdistetun yhdyskuntajäteveden kautta, mutta vielä useampia aineita kaatopaikkojen suotoveden kautta. Lisäksi monia aineita löytyy puhdistamolietteestä. Johtopäätösten tekemistä vaikeuttaa suomalaisen mitatun pitoisuustiedon vähäisyys ja huono vertailukelpoisuus johtuen mm. erilaisista analyysimenetelmistä ja määritysrajoista, mitatuista isomeereistä tai siitä, että tulokset on raportoitu liian yleisellä tasolla. Vaarallisten aineiden riskinhallinnassa pyritään pintaveden ympäristönlaatunormien alittumisen lisäksi siihen, että niiden päästöt ympäristöön loppuvat ja niitä ei löydetä ympäristöstä. Vastaavasti haitallisten aineiden riskinhallinnassa tavoitteena on pintaveden ympäristönlaatunormien alittumisen lisäksi se, että niiden päästöt vesiympäristöön vähentyvät. Tämä selvitys on edistänyt kansallisen kemikaaliohjelman altistumiseen liittyviä toimenpiteitä. Seuraava vaihe toimenpiteiden toteuttamisessa on päästömäärien arviointi koko Suomen tasolla yhdyskuntajätevedenpuhdistamoilta ja kaatopaikoilta

    A preliminary study on the ecotoxic potency of wastewater treatment plant sludge combining passive sampling and bioassays

    Get PDF
    Highlights • The passive samplers collected bioavail able and bioaccessible chemicals from the WWTP sludge samples. • The sampler extracts were acutely and chronically toxic to water flea. • The sampler extracts were cytotoxic and genotoxic. • The sludge treatment such as composting and digesting diminished the toxicity. • Effect-based methods should be part of the risk assessment of sludge recycling.Sewage sludge is an inevitable byproduct produced in wastewater treatment. Reusing nutrient-rich sludge will diminish the amount of waste ending in soil dumping areas and will promote circular economy. However, during sewage treatment process, several potentially harmful organic chemicals are retained in sludge, but proving the safety of processed sludge will promote its more extensive use in agriculture and landscaping. Environmental risk assessment of sludge requires new methods of characterizing its suitability for various circu lar economy applications. Bioavailable and bioaccessible fractions are key variables indicating leaching, transport, and bioaccumulation capacity. Also, sludge treatments have a significant effect on chemical status and resulting environmental risks. In this study, the concentrations of polyaromatic hydrocarbons (PAHs), triclosan (TCS), triclocarban (TCC), methyl triclosan (mTCS), and selected active pharmaceutical ingredients (APIs) were deter mined in different sludge treatments and fractions. Passive samplers were used to characterize the bioavailable and bioaccessible fractions, and the sampler extracts along the sludge and filtrate samples were utilized in the bioassays. The TCS and PAH concentrations did not decrease as the sludge was digested, but the contents diminished after composting. Also, mTCS concentration decreased after composting. The API concentrations were lower in digested sludge than in secondary sludge. Digested sludge was toxic for Aliivibrio fischeri, but after composting, toxicity was not observed. However, for Daphnia magna, passive sampler extracts of all sludge treatments were either acutely (immobility) or chronically (reproduction) toxic. Secondary and digested sludge sampler extracts were cytotoxic, and secondary sludge ex tract was also genotoxic. The measured chemical concentration levels did not explain the toxicity of the samples based on the reported toxicity thresholds. Bioassays and sampler extracts detecting bioavailable and bioaccessible contaminants in sludge are complementing tools for chemical analyses. Harmonization of these methodswill help establish scientifically sound regulative thresholds for the use of sludge in circular economy applications

    Good practices for take-back and disposal of unused pharmaceuticals in the Baltic Sea region. Clear Waters from Pharmaceuticals (CWPharma) Activity 4.1 Report

    Get PDF
    Appropriate collection and disposal of medicine-related waste has been identified as one of the main ways to decrease the emission of active pharmaceutical ingredients (APIs) into the environment. Improvement to the take-back and treatment of collected pharmaceutical waste may be considered low-hanging fruit when one is considering measures to reduce API emissions. However, comparable information that would enable estimating the potential impact of these efforts has not been available. Directive 2004/27/EC, related to medicinal products for human use, mandates that EU member states implement appropriate collection schemes for unused or expired human-use medicinal products. However, it does not provide any guidelines on practical implementation of these schemes. Several studies have pointed out significant differences among Member States in this regard. In March 2019, the European Commission published the European Union Strategic Approach to Pharmaceuticals in the Environment. The actions specified therein cover all stages of the pharmaceutical life cycle, from design and production to disposal and waste management. It emphasizes such elements as sharing good practices, co-operating at international level, and improving understanding of the risks. This report is aimed at filling knowledge gaps and proposing good practices for take-back and disposal of unused human and veterinary medicines and other pharmaceutical waste. The report is targeted to e.g. ministries, environment and medicines agencies, supervisory authorities, municipalities, hospitals, NGOs, pharmacists, doctors, and veterinarians. For the report, current national practices for take-back and disposal of unused medicines and other pharmaceutical waste in Denmark, Estonia, Finland, Germany, Latvia, Lithuania, Poland, Russia, and Sweden were evaluated. The pharmaceutical waste originating from households, hospitals and other health care institutions, the pharmaceutical industry, and veterinary use was considered. The proportion of citizens who return unused pharmaceuticals via designated collection points varies greatly between Baltic Sea countries, from about 10% to 70%, with 16–80% disposing of them of as mixed household waste and 3–30% flushing them down the drain. The most commonly cited reason for improper disposal of medicines on households’ part is lack of information about their environmental impacts and how to get rid of them in an environmentally sound manner. Separate collection of unused household pharmaceuticals does not exist in Russia, and the collection mechanism functions poorly in Latvia, Lithuania and Poland. Information on the take-back schemes for unused human medicines is more readily available than is corresponding information on veterinary medicines. We identified, all told, 21 good practices and recommendations for take-back and disposal of unused pharmaceuticals and other pharmaceutical waste and for promoting the rational use of pharmaceuticals in the Baltic Sea region. Nevertheless, implementing them at national level requires particular consideration due to differences in national legislation and other characteristics of the EU Baltic Sea countries and Russia. The good practices identified in this report answer the call issued in the EU strategic approach for an efficient risk-reduction strategy
    corecore