166 research outputs found
Synchronous vs. asynchronous dynamics of diffusion-controlled reactions
An analytical method based on the classical ruin problem is developed to
compute the mean reaction time between two walkers undergoing a generalized
random walk on a 1d lattice. At each time step, either both walkers diffuse
simultaneously with probability (synchronous event) or one of them diffuses
while the other remains immobile with complementary probability (asynchronous
event). Reaction takes place through same site occupation or position exchange.
We study the influence of the degree of synchronicity of the walkers and
the lattice size on the global reaction's efficiency. For odd , the
purely synchronous case () is always the most effective one, while for
even , the encounter time is minimized by a combination of synchronous and
asynchronous events. This new parity effect is fully confirmed by Monte Carlo
simulations on 1d lattices as well as for 2d and 3d lattices. In contrast, the
1d continuum approximation valid for sufficiently large lattices predicts a
monotonic increase of the efficiency as a function of . The relevance of the
model for several research areas is briefly discussed.Comment: 21 pages (including 12 figures and 4 tables), uses revtex4.cls,
accepted for publication in Physica
Bulk Mediated Surface Diffusion: Non Markovian Desorption with Finite First Moment
Here we address a fundamental issue in surface physics: the dynamics of
adsorbed molecules. We study this problem when the particle's desorption is
characterized by a non Markovian process, while the particle's adsorption and
its motion in the bulk are governed by a Markovian dynamics. We study the
diffusion of particles in a semi-infinite cubic lattice, and focus on the
effective diffusion process at the interface . We calculate analytically
the conditional probability to find the particle on the plane as well as
the surface dispersion as functions of time. The comparison of these results
with Monte Carlo simulations show an excellent agreement.Comment: 16 pages, 7 figs. European Physical Journal B (in press
Localization transition of random copolymers at interfaces
We consider adsorption of random copolymer chains onto an interface within
the model of Garel et al. Europhysics Letters 8, 9 (1989). By using the replica
method the adsorption of the copolymer at the interface is mapped onto the
problem of finding the ground state of a quantum mechanical Hamiltonian. To
study this ground state we introduce a novel variational principle for the
Green's function, which generalizes the well-known Rayleigh-Ritz method of
Quantum Mechanics to nonstationary states. Minimization with an appropriate
trial Green's function enables us to find the phase diagram for the
localization-delocalization transition for an ideal random copolymer at the
interface.Comment: 5 page
Stochastic processes with finite correlation time: modeling and application to the generalized Langevin equation
The kangaroo process (KP) is characterized by various forms of the covariance
and can serve as a useful model of random noises. We discuss properties of that
process for the exponential, stretched exponential and algebraic (power-law)
covariances. Then we apply the KP as a model of noise in the generalized
Langevin equation and simulate solutions by a Monte Carlo method. Some results
appear to be incompatible with requirements of the fluctuation-dissipation
theorem because probability distributions change when the process is inserted
into the equation. We demonstrate how one can construct a model of noise free
of that difficulty. This form of the KP is especially suitable for physical
applications.Comment: 22 pages (RevTeX) and 4 figure
A symmetric polymer blend confined into a film with antisymmetric surfaces: interplay between wetting behavior and phase diagram
We study the phase behavior of a symmetric binary polymer blend which is
confined into a thin film. The film surfaces interact with the monomers via
short range potentials. We calculate the phase behavior within the
self-consistent field theory of Gaussian chains. Over a wide range of
parameters we find strong first order wetting transitions for the semi-infinite
system, and the interplay between the wetting/prewetting behavior and the phase
diagram in confined geometry is investigated. Antisymmetric boundaries, where
one surface attracts the A component with the same strength than the opposite
surface attracts the B component, are applied. The phase transition does not
occur close to the bulk critical temperature but in the vicinity of the wetting
transition. For very thin films or weak surface fields one finds a single
critical point at . For thicker films or stronger surface fields
the phase diagram exhibits two critical points and two concomitant coexistence
regions. Only below a triple point there is a single two phase coexistence
region. When we increase the film thickness the two coexistence regions become
the prewetting lines of the semi-infinite system, while the triple temperature
converges towards the wetting transition temperature from above. The behavior
close to the tricritical point, which separates phase diagrams with one and two
critical points, is studied in the framework of a Ginzburg-Landau ansatz.
Two-dimensional profiles of the interface between the laterally coexisting
phases are calculated, and the interfacial and line tensions analyzed. The
effect of fluctuations and corrections to the self-consistent field theory are
discussed.Comment: Phys.Rev.E in prin
Diblock copolymers at a homopolymer-homopolymer-interface: a Monte Carlo simulation
The properties of diluted symmetric A-B diblock copolymers at the interface
between A and B homopolymer phases are studied by means of Monte Carlo (MC)
simulations of the bond fluctuation model. We calculate segment density
profiles as well as orientational properties of segments, of A and B blocks,
and of the whole chain. Our data support the picture of oriented ``dumbbells'',
which consist of mildly perturbed A and B Gaussian coils. The results are
compared to a self consistent field theory (SCFT) for single copolymer chains
at a homopolymer interface. We also discuss the number of interaction contacts
between monomers, which provide a measure for the ``active surface'' of
copolymers or homopolymers close to the interface
Luminescence spectra and kinetics of disordered solid solutions
We have studied both theoretically and experimentally the luminescence spectra and kinetics of crystalline, disordered solid solutions after pulsed excitation. First, we present the model calculations of the steady-state luminescence band shape caused by recombination of excitons localized in the wells of random potential induced by disorder. Classification of optically active tail states of the main exciton band into two groups is proposed. The majority of the states responsible for the optical absorption corresponds to the group of extended states belonging to the percolation cluster, whereas only a relatively small group of “radiative” states forms the steady-state luminescence band. The continuum percolation theory is applied to distinguish the “radiative” localized states, which are isolated in space and have no ways for nonradiative transitions along the tail states. It is found that the analysis of the exciton-phonon interaction gives the information about the character of the localization of excitons. We have shown that the model used describes quite well the experimental cw spectra of CdS(1−c)Sec and ZnSe(1−c)Tec solid solutions. Further, the experimental results are presented for the temporal evolution of the luminescence band. It is shown that the changes of band shape with time come from the interplay of population dynamics of extended states and spatially isolated “radiative” states. Finally, the measurements of the decay of the spectrally integrated luminescence intensity at long delay times are presented. It is shown that the observed temporal behavior can be described in terms of relaxation of separated pairs followed by subsequent exciton formation and radiative recombination. Electron tunneling processes are supposed to be responsible for the luminescence in the long-time limit at excitation below the exciton mobility edge. At excitation by photons with higher energies the diffusion of electrons can account for the observed behavior of the luminescence
- …