19 research outputs found

    High throughput genomic sequencing of bioaerosols in broiler chicken production facilities

    Get PDF
    Chronic inhalation exposure to agricultural dust promotes the development of chronic respiratory diseases among poultry workers. Poultry dust is composed of dander, chicken feed, litter bedding and microbes. However, the microbial composition and abundance has not been fully elucidated. Genomic DNA was extracted from settled dust and personal inhalable dust collected while performing litter sampling or mortality collection tasks. DNA libraries were sequenced using a paired-end sequencing-by-synthesis approach on an Illumina HiSeq 2500. Sequencing data showed that poultry dust is predominantly composed of bacteria (64–67%) with a small quantity of avian, human and feed DNA (\u3c 2% of total reads). Staphylococcus sp. AL1, Salinicoccus carnicancri and Lactobacillus crispatus were the most abundant bacterial species in personal exposure samples of inhalable dust. Settled dust had a moderate relative abundance of these species as well as Staphylococcus lentus and Lactobacillus salivarius. There was a statistical difference between the microbial composition of aerosolized and settled dust. Unlike settled dust composition, aerosolized dust composition had little variance between samples. These data provide an extensive analysis of the microbial composition and relative abundance in personal inhalable poultry dust and settled poultry dust

    Influenza A RNA copies/m<sup>3</sup> of air concentrations detected in the swine facilities using two personal bioaerosol samplers.

    No full text
    <p>Personal samples were collected among veterinarians working in swine production facilities that were infected with influenza A (H1N1 or H3N2) virus. Swine veterinarians were called to the swine facilities during a suspected influenza A infection and collected bodily fluids for a diagnosis. Samples were collected at various time during or after this initial evaluation of the infected swine herd. The NIOSH bioaerosol sampler and the PHISH collected samples at a flow rate of 3.5 L/min and 10 L/min, respectively. Total RNA copies/m<sup>3</sup> were determined by qPCR. The summary of the data is reported as geometric mean (GM) and geometric standard deviation (GSD).</p

    Summary of the swine farms during sampling.

    No full text
    <p>The criteria for a swine to test positive for influenza A virus was a qPCR Ct value ≤ 37 among the swine oral or nasopharyngeal samples. Data is reported as the average RNA copies/mL of either oral or nasal fluid. All samples were collected during the peak months of influenza A infections. *Room contained 20 sows with 250 piglets. Natural ventilation is not applicable for the sow/nursery farm because the farm is enclosed with solid walls.</p

    Comparison of virus aerosol concentrations across a face shield worn on a healthcare personnel during a simulated patient cough

    No full text
    BACKGROUND: Patients diagnosed with coronavirus disease 2019 (COVID-19) aerosolize severe acute respiratory coronavirus virus 2 (SARS-CoV-2) via respiratory efforts, expose, and possibly infect healthcare personnel (HCP). To prevent transmission of SARS-CoV-2 HCP have been required to wear personal protective equipment (PPE) during patient care. Early in the COVID-19 pandemic, face shields were used as an approach to control HCP exposure to SARS-CoV-2, including eye protection. METHODS: An MS2 bacteriophage was used as a surrogate for SARS-CoV-2 and was aerosolized using a coughing machine. A simulated HCP wearing a disposable plastic face shield was placed 0.41 m (16 inches) away from the coughing machine. The aerosolized virus was sampled using SKC biosamplers on the inside (near the mouth of the simulated HCP) and the outside of the face shield. The aerosolized virus collected by the SKC Biosampler was analyzed using a viability assay. Optical particle counters (OPCs) were placed next to the biosamplers to measure the particle concentration. RESULTS: There was a statistically significant reduction ( \u3c .0006) in viable virus concentration on the inside of the face shield compared to the outside of the face shield. The particle concentration was significantly lower on the inside of the face shield compared to the outside of the face shield for 12 of the 16 particle sizes measured ( \u3c .05). CONCLUSIONS: Reductions in virus and particle concentrations were observed on the inside of the face shield; however, viable virus was measured on the inside of the face shield, in the breathing zone of the HCP. Therefore, other exposure control methods need to be used to prevent transmission from virus aerosol

    Bioaerosol concentrations generated from toilet flushing in a hospital-based patient care setting

    No full text
    Abstract Background In the United States, 1.7 million immunocompromised patients contract a healthcare-associated infection, annually. These infections increase morbidity, mortality and costs of care. A relatively unexplored route of transmission is the generation of bioaerosols during patient care. Transmission of pathogenic microorganisms may result from inhalation or surface contamination of bioaerosols. The toilet flushing of patient fecal waste may be a source of bioaerosols. To date, no study has investigated bioaerosol concentrations from flushing fecal wastes during patient care. Methods Particle and bioaerosol concentrations were measured in hospital bathrooms across three sampling conditions; no waste no flush, no waste with flush, and fecal waste with flush. Particle and bioaerosol concentrations were measured with a particle counter bioaerosol sampler both before after a toilet flushing event at distances of 0.15, 0.5, and 1 m from the toilet for 5, 10, 15 min. Results Particle concentrations measured before and after the flush were found to be significantly different (0.3–10 μm). Bioaerosol concentrations when flushing fecal waste were found to be significantly greater than background concentrations (p-value = 0.005). However, the bioaerosol concentrations were not different across time (p-value = 0.977) or distance (p-value = 0.911) from the toilet, suggesting that aerosols generated may remain for longer than 30 min post flush. Toilets produce aerosol particles when flushed, with the majority of the particles being 0.3 μm in diameter. The particles aerosolized include microorganisms remaining from previous use or from fecal wastes. Differences in bioaerosol concentrations across conditions also suggest that toilet flushing is a source of bioaerosols that may result in transmission of pathogenic microorganisms. Conclusions This study is the first to quantify particles and bioaerosols produced from flushing a hospital toilet during routine patient care. Future studies are needed targeting pathogens associated with gastrointestinal illness and evaluating aerosol exposure reduction interventions

    Systematic Review of Respiratory Health Among Dairy Workers

    No full text
    The dairy industry is changing on a global scale with larger, more efficient operations. The impact of this change on worker health and safety, specifically, associations between occupational lung disease and inhalation exposures, has yet to be reported in a comprehensive review of the scientific literature. Therefore, a three-tier process was used to identify information using a keyword search of online databases of scientific literature. Of the 147 citations reviewed, 52 met initial screening criteria, and 30 were included in this review. Dairy workers experience lung conditions such as asthma, chronic obstructive pulmonary disease, hypersensitivity pneumonitis, chronic bronchitis, and cancer. Recent pulmonary function studies have identified obstructive lung changes among dairy farm workers. The increased scale of dairy production with significant changes in technology and work practices has altered inhalation exposure patterns among dairy workers. The inhalation exposure in the dairy work environment may elicit differing inflammatory responses in relation to timing of initial exposure as well as to repeated exposures. Few studies have measured inhalation exposure while simultaneously assessing the impact of the exposure on lung function of dairy farm workers. Even fewer studies have been implemented to assess the impact of aerosol control technology to reduce inhalation exposure. Future research should evaluate worker exposure to aerosols through a task-based approach while utilizing novel methods to assess inhalation exposure and associated inflammatory responses. Finally, potential solutions should be developed and tested to reduce inhalation exposure to inflammatory agents and respiratory diseases in the dairy farm work environment

    Preliminary investigation of a hypertonic saline nasal rinse as a hygienic intervention in dairy workers

    No full text
    Livestock workers experience an increased burden of bioaerosol-induced respiratory disease including a high prevalence of rhinosinusitis. Dairy operations generate bioaerosols spanning the inhalable size fraction (0–100 μm) containing bacterial constituents such as endotoxin. Particles with an aerodynamic diameter between 10 and 100 μm are known to deposit in the nasopharyngeal region and likely affect the upper respiratory tract. We evaluated the effectiveness of a hypertonic saline nasal lavage in reducing inflammatory responses in dairy workers from a high-volume dairy operation. Inhalable personal breathing zone samples and pre-/post-shift nasal lavage samples from each participant over five consecutive days were collected. The treatment group (n = 5) received hypertonic saline while the control group (n = 5) received normotonic saline. Personal breathing zone samples were analyzed for particulate concentrations and endotoxin using gravimetric and enzymatic methods, respectively. Pro- and anti-inflammatory cytokines (i.e., IL-8, IL-10, and TNF-α) were measured from nasal lavage samples using a multiplex assay. Inhalable dust concentrations ranged from 0.15 to 1.9 mg/m3. Concentrations of both pro- and anti-inflammatory cytokines, specifically IL-6, IL-8, and IL-10, were significantly higher in the treatment group compared to the control group (p p p < 0.01, respectively). Further analysis of IL-10 anti-inflammatory indicates a positive association between hypertonic saline administration and IL-10 production. This pilot study demonstrates that hypertonic saline nasal lavages were successful in upregulating anti-inflammatory cytokines to support larger interventional studies.</p
    corecore