25 research outputs found

    DNA methylation and gene expression integration in cardiovascular disease

    Get PDF
    Background: The integration of different layers of omics information is an opportunity to tackle the complexity of cardiovascular diseases (CVD) and to identify new predictive biomarkers and potential therapeutic targets. Our aim was to integrate DNA methylation and gene expression data in an effort to identify biomarkers related to cardiovascular disease risk in a community-based population. We accessed data from the Framingham Offspring Study, a cohort study with data on DNA methylation (Infinium HumanMethylation450 BeadChip; Illumina) and gene expression (Human Exon 1.0 ST Array; Affymetrix). Using the MOFA2 R package, we integrated these data to identify biomarkers related to the risk of presenting a cardiovascular event. Results: Four independent latent factors (9, 19, 21-only in women-and 27), driven by DNA methylation, were associated with cardiovascular disease independently of classical risk factors and cell-type counts. In a sensitivity analysis, we also identified factor 21 as associated with CVD in women. Factors 9, 21 and 27 were also associated with coronary heart disease risk. Moreover, in a replication effort in an independent study three of the genes included in factor 27 were also present in a factor identified to be associated with myocardial infarction (CDC42BPB, MAN2A2 and RPTOR). Factor 9 was related to age and cell-type proportions; factor 19 was related to age and B cells count; factor 21 pointed to human immunodeficiency virus infection-related pathways and inflammation; and factor 27 was related to lifestyle factors such as alcohol consumption, smoking and body mass index. Inclusion of factor 21 (only in women) improved the discriminative and reclassification capacity of the Framingham classical risk function and factor 27 improved its discrimination. Conclusions: Unsupervised multi-omics data integration methods have the potential to provide insights into the pathogenesis of cardiovascular diseases. We identified four independent factors (one only in women) pointing to inflammation, endothelium homeostasis, visceral fat, cardiac remodeling and lifestyles as key players in the determination of cardiovascular risk. Moreover, two of these factors improved the predictive capacity of a classical risk function

    Identification of differentially expressed genes in actinic keratosis samples treated with ingenol mebutate gel

    No full text
    Actinic keratosis is a common skin disease that may progress to invasive squamous cell carcinoma if left untreated. Ingenol mebutate has demonstrated efficacy in field treatment of actinic keratosis. However, molecular mechanisms on ingenol mebutate response are not yet fully understood. In this study, we evaluated the gene expression profiles of actinic keratosis lesions before and after treatment with ingenol mebutate using microarray technology. Actinic keratoses on face/scalp of 15 immunocompetent patients were identified and evaluated after treatment with topical ingenol mebutate gel 0.015%, applied once daily for 3 consecutive days. Diagnostic and clearance of lesions was determined by clinical, dermoscopic, and reflectance confocal microscopy criteria. Lesional and non-lesional skin biopsies were subjected to gene expression analysis profiled by Affymetrix microarray. Differentially expressed genes were identified, and enrichment analyses were performed using STRING database. At 8 weeks post-treatment, 60% of patients responded to ingenol mebutate therapy, achieving complete clearance in 40% of cases. A total of 128 differentially expressed genes were identified following treatment, and downregulated genes (114 of 128) revealed changes in pathways important to epidermal development, keratinocyte differentiation and cornification. In responder patients, 388 downregulated genes (of 450 differentially expressed genes) were also involved in development/differentiation of the epidermis, and immune system-related pathways, such as cytokine and interleukin signaling. Cluster analysis revealed two relevant clusters showing upregulated profile patterns in pre-treatment actinic keratoses of responders, as compared to non-responders. Again, differentially expressed genes were mainly associated with cornification, keratinization and keratinocyte differentiation. Overall, the present study provides insight into the gene expression profile of actinic keratoses after treatment with ingenol mebutate, as well as identification of genetic signatures that could predict treatment response

    Comorbidity between Alzheimer's disease and major depression: a behavioural and transcriptomic characterization study in mice

    No full text
    Background: Major depression (MD) is the most prevalent psychiatric disease in the population and is considered a prodromal stage of the Alzheimer's disease (AD). Despite both diseases having a robust genetic component, the common transcriptomic signature remains unknown. Methods: We investigated the cognitive and emotional behavioural responses in 3- and 6-month-old APP/PSEN1-Tg mice, before β-amyloid plaques were detected. We studied the genetic and pathway deregulation in the prefrontal cortex, striatum, hippocampus and amygdala of mice at both ages, using transcriptomic and functional data analysis. Results: We found that depressive-like and anxiety-like behaviours, as well as memory impairments, are already present at 3-month-old APP/PSEN1-Tg mutant mice together with the deregulation of several genes, such as Ciart, Grin3b, Nr1d1 and Mc4r, and other genes including components of the circadian rhythms, electron transport chain and neurotransmission in all brain areas. Extending these results to human data performing GSEA analysis using DisGeNET database, it provides translational support for common deregulated gene sets related to MD and AD. Conclusions: The present study sheds light on the shared genetic bases between MD and AD, based on a comprehensive characterization from the behavioural to transcriptomic level. These findings suggest that late MD could be an early manifestation of AD.This study was funded by the EU Medbioinformatic project (grant number 634143), Ministerio de Economia y Competitividad (grant number SAF2016-75966-R-FEDER and PID2019-104077-RB-100) and Ministerio de Sanidad (Retic-ISCIII, RD16/017/010 and Plan Nacional sobre Drogas 2018/007). The Department of Experimental and Health Sciences (UPF) is a “Unidad de Excelencia María de Maeztu” funded by the AEI (CEX2018-000792-M). The Research Programme on Biomedical Informatics (GRIB) is a member of the Spanish National Bioinformatics Institute (INB), funded by ISCIII and FEDER (PT17/0009/0014). The GRIB is also supported by the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR), Generalitat de Catalunya (2017 SGR 00519)

    Expression profiling of microRNAs in human bone tissue from postmenopausal women

    No full text
    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.This work was supported by the Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF; RD12/0043/0022) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES; CB16/10/00245), and the Grants PI10/01537, PI13/00116, and PI13/00444 from FIS (Carlos III Health Institute, Science and Innovation Ministry); SAF2016-75948-R, from Ministerio de Economia y Competitividad, and 2014SGR-932 from Generalitat de Catalunya. FEDER funds also supported this study

    Transcriptome analysis of severely active chronic spontaneous urticaria shows an overall immunological skin involvement

    No full text
    BACKGROUND: The knowledge about chronic spontaneous urticaria (CSU) phenotypes is based on its clinical characteristics, associated comorbidities, course of the disease, and its response to the available effective drugs. Genotype expression and its further correlation with CSU phenotypes are still unknown. We describe the cutaneous transcriptome of patients suffering a severely active CSU refractory to antihistamine treatment. METHODS: Through the bioinformatic analysis of the whole Human Genome with Oligo Microarrays and quantitative real-time polymerase chain reaction (qPCR), relevant genes expressed in nonlesional (NLS-CSU) and lesional skin (LS-CSU) and peripheral blood were identified in 20 patients suffering from severely active CSU and 10 healthy controls (HCs). RESULTS: From 39 genes differentially expressed in NLS-CSU when compared with HCs, 31 (79.48%) were confirmed by qPCR corresponding to genes involved in epidermal homeostasis and dermal repair. From the analysis comparing LS-CSU with NLS-CSU, a selection of 142 genes was studied with qPCR, and 103 (72.53%) were confirmed. Differentially expressed genes in the phenomenon of wheal development are involved in a variety of biological functions as, epidermal differentiation, intracellular signal function, transcriptional factors cell cycle differentiation, inflammation, or coagulation. Differentially expressed genes that uniformly increase or decrease along the skin worsening until the wheal appearance is shown. CONCLUSION: The skin of CSU patients with a severely active disease shows an overall immunological skin involvement showing a peculiar gene profile

    FOXO1 down-regulation is associated with worse outcome in bladder cancer and adds significant prognostic information to p53 overexpression

    No full text
    Nuclear FOXOs mediate cell cycle arrest and promote apoptosis. FOXOs and p53 could have similar effects as tumor suppressor genes. In spite of extensive literature, little is known about the role of FOXO1 and its relationship with p53 status in bladder cancer. Expression of FOXO1 and p53 were analyzed by immunohistochemistry in 162 urothelial carcinomas (UC). Decreased FOXO1 expression, p53 overexpression and the combination FOXO1 down-regulation/p53 overexpression were strongly associated with high grade (P=.030; P=.017; P=.004, respectively), high stage (P=.0001; P<.0001; P<.0001, respectively) or both (P=.0004; P<.0001; P<.0001, respectively). In the overall series of cases, p53 overexpression was associated with tumor progression (hazard ratio [HR]=3.18, 95% confidence interval [CI] 1.19-8.48, P=.02), but this association was even stronger if having any alteration in any of the 2 genes was considered (HR=3.51, 95% CI 1.34-9.21, P=.01). Having both FOXO1 down-regulation and p53 overexpression was associated with disease recurrence (HR=2.75, 95% CI 1.06-7.13, P=.03). In the analysis of the different subgroups, having any alteration in any of the 2 genes was associated with progression in low-grade (P=.005) and pTa (P=.006) tumors. Finally, the combined FOXO1 down-regulation/p53 overexpression was associated with disease recurrence specifically in high-grade (P=.04) and in pT1 stage tumors (P=.007). Adding FOXO1 expression to the immunohistochemical analysis of p53 can provide relevant prognostic information on progression and recurrence of bladder cancer. It may be particularly informative on the risk of progression in the more indolent and on the risk of recurrence in the more aggressive tumors

    The acute effects of ultraviolet radiation on the blood transcriptome are independent

    No full text
    The molecular basis of many health outcomes attributed to solar ultraviolet radiation (UVR) is unknown. We tested the hypothesis that they may originate from transcriptional changes in blood cells. This was determined by assessing the effect of fluorescent solar simulated radiation (FSSR) on the transcriptional profile of peripheral blood pre- and 6h, 24h and 48h post-exposure in nine healthy volunteers. Expression of 20 genes was down-regulated and one was up-regulated at 6h after FSSR. All recovered to baseline expression at 24h or 48h. These genes have been associated with immune regulation, cancer and blood pressure; health effects attributed to vitamin D via solar UVR exposure. Plasma 25-hydroxyvitamin D3 [25OHD3] levels increased over time after FSSR and were maximal at 48h. The increase was more pronounced in participants with low basal 25OHD3 levels. Mediation analyses suggested that changes in gene expression due to FSSR were independent of 25OHD3 and blood cell subpopulations.This study was supported by CERCA Programme / Generalitat de Catalunya and it was funded by the Instituto de Salud Carlos III FEDER (PI10/02235), the Spanish Ministry of Economy and Competitiveness (MTM2015-68140-R), the European Commission, under the Framework 7 Programme Environment Theme [Contract No. 227020: The Impact of Climate and Environmental Factors on Personal Ultraviolet Radiation Exposure and Human Health (ICEPURE)], and the UK National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London, UK. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the UK Department of Health. Wenjing Kang and Marc R. Friedländer acknowledge funding from the Strategic Research Area program of the Swedish Research Council through Stockholm University

    Defining quantification methods and optimizing protocols for microarray hybridization of circulating microRNAs

    Get PDF
    MicroRNAs (miRNAs) have emerged as promising biomarkers of disease. Their potential use in clinical practice requires standardized protocols with very low miRNA concentrations, particularly in plasma samples. Here we tested the most appropriate method for miRNA quantification and validated the performance of a hybridization platform using lower amounts of starting RNA. miRNAs isolated from human plasma and from a reference sample were quantified using four platforms and profiled with hybridization arrays and RNA sequencing (RNA-seq). Our results indicate that the Infinite® 200 PRO Nanoquant and Nanodrop 2000 spectrophotometers magnified the miRNA concentration by detecting contaminants, proteins, and other forms of RNA. The Agilent 2100 Bioanalyzer PicoChip and SmallChip gave valuable information on RNA profile but were not a reliable quantification method for plasma samples. The Qubit® 2.0 Fluorometer provided the most accurate quantification of miRNA content, although RNA-seq confirmed that only ~58% of small RNAs in plasma are true miRNAs. On the other hand, reducing the starting RNA to 70% of the recommended amount for miRNA profiling with arrays yielded results comparable to those obtained with the full amount, whereas a 50% reduction did not. These findings provide important clues for miRNA determination in human plasma samples

    FOXO1 down-regulation is associated with worse outcome in bladder cancer and adds significant prognostic information to p53 overexpression

    No full text
    Nuclear FOXOs mediate cell cycle arrest and promote apoptosis. FOXOs and p53 could have similar effects as tumor suppressor genes. In spite of extensive literature, little is known about the role of FOXO1 and its relationship with p53 status in bladder cancer. Expression of FOXO1 and p53 were analyzed by immunohistochemistry in 162 urothelial carcinomas (UC). Decreased FOXO1 expression, p53 overexpression and the combination FOXO1 down-regulation/p53 overexpression were strongly associated with high grade (P=.030; P=.017; P=.004, respectively), high stage (P=.0001; P<.0001; P<.0001, respectively) or both (P=.0004; P<.0001; P<.0001, respectively). In the overall series of cases, p53 overexpression was associated with tumor progression (hazard ratio [HR]=3.18, 95% confidence interval [CI] 1.19-8.48, P=.02), but this association was even stronger if having any alteration in any of the 2 genes was considered (HR=3.51, 95% CI 1.34-9.21, P=.01). Having both FOXO1 down-regulation and p53 overexpression was associated with disease recurrence (HR=2.75, 95% CI 1.06-7.13, P=.03). In the analysis of the different subgroups, having any alteration in any of the 2 genes was associated with progression in low-grade (P=.005) and pTa (P=.006) tumors. Finally, the combined FOXO1 down-regulation/p53 overexpression was associated with disease recurrence specifically in high-grade (P=.04) and in pT1 stage tumors (P=.007). Adding FOXO1 expression to the immunohistochemical analysis of p53 can provide relevant prognostic information on progression and recurrence of bladder cancer. It may be particularly informative on the risk of progression in the more indolent and on the risk of recurrence in the more aggressive tumors

    Epigenetic silencing of tumor suppressor miR-124 directly supports STAT3 activation in cutaneous T-Cell lymphoma

    No full text
    Increasing evidence supports a potential role for STAT3 as a tumor driver in cutaneous T-cell lymphomas (CTCL). The mechanisms leading to STAT3 activation are not fully understood; however, we recently found that miR-124, a known STAT3 regulator, is robustly silenced in MF tumor-stage and CTCL cells. Objective: We studied here whether deregulation of miR-124 contributes to STAT3 pathway activation in CTCL. Methods: We measured the effect of ectopic mir-124 expression in active phosphorylated STAT3 (p-STAT3) levels and evaluated the transcriptional impact of miR-124-dependent STAT3 pathway regulation by expression microarray analysis. Results: We found that ectopic expression of miR-124 results in massive downregulation of activated STAT3 in different CTCL lines, which resulted in a significant alteration of genetic signatures related with gene transcription and proliferation such as MYC and E2F. Conclusions: Our study highlights the importance of the miR-124/STAT3 axis in CTCL and demonstrates that the STAT3 pathway is regulated through epigenetic mechanisms in these cells. Since deregulated STAT3 signaling has a major impact on CTCL initiation and progression, a better understanding of the molecular basis of the miR-124/STAT3 axis may provide useful information for future personalized therapies
    corecore