89 research outputs found

    Candida antarctica lipase-catalyzed synthesis and characterization of novel acrylic teroligomers

    Get PDF
    The synthesis of three novel low molecular weight acrylic terpolymers, containing at random sequences of ethyl acrylate, acrylic acid and N-(2-hydroxyethyl)acrylamide, catalyzed by Candida antarctica lipase was successfully conducted in organic media. For the first time, these products have been enzymatically synthesized using ethyl acrylate as the only monomer starting material and taking advantage of a triple activity displayed by the lipase. In the presence of ethanolamine, the enzyme not only catalyzes the chain polymerization of ethyl acrylate but also the aminolysis and hydrolysis of the pendant ester groups affording the terpolymers. The products were characterized by 1H and 13C NMR and UV-MALDI-TOF-MS.Fil: Baldessari, Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Fatema, M. Kaniz. Ehime University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Rustoy, Eduardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; Argentin

    Dynamics and stabilization mechanism of mitochondrial cristae morphofunction associated with turgor-driven cardiolipin biosynthesis under salt stress conditions

    Get PDF
    Maintaining energy production efficiency is of vital importance to plants growing under changing environments. Cardiolipin localized in the inner mitochondrial membrane plays various important roles in mitochondrial function and its activity, although the regulation of mitochondrial morphology to various stress conditions remains obscure, particularly in the context of changes in cellular water relations and metabolisms. By combining single-cell metabolomics with transmission electron microscopy, we have investigated the adaptation mechanism in tomato trichome stalk cells at moderate salt stress to determine the kinetics of cellular parameters and metabolisms. We have found that turgor loss occurred just after the stress conditions, followed by the contrasting volumetric changes in mitochondria and cells, the accumulation of TCA cycle-related metabolites at osmotic adjustment, and a temporal increase in cardiolipin concentration, resulting in a reversible topological modification in the tubulo-vesicular cristae. Because all of these cellular events were dynamically observed in the same single-cells without causing any disturbance for redox states and cytoplasmic streaming, we conclude that turgor pressure might play a regulatory role in the mitochondrial morphological switch throughout the temporal activation of cardiolipin biosynthesis, which sustains mitochondrial respiration and energy conversion even under the salt stress conditions.Fil: Nakata, Keisuke. Ehime University; JapónFil: Hatakeyama, Yuto. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Nonami, Hiroshi. Ehime University; JapónFil: Wada, Hiroshi. Ehime University; Japó

    Endosperm cell size reduction caused by osmotic adjustment during nighttime warming in rice

    Get PDF
    High night temperature (HNT) often reduces yield in field crops. In rice, HNT during the ripening stage diminishes endosperm cell size, resulting in a considerable reduction in final kernel weight; however, little is known about the underlying mechanisms at cell level. In this study, we performed picolitre pressure-probe-electrospray-ionization mass spectrometry to directly determine metabolites in growing inner endosperm cells of intact seeds produced under HNT conditions, combining with 13C feeding and water status measurements including in situ turgor assay. Microscopic observation in the inner zone suggested that approximately 24.2% of decrease in cell expansion rate occurred under HNT at early ripening stage, leading to a reduction in cell volume. It has been shown that HNT-treated plants were subjected to mild shoot water deficit at night and endosperm cell turgor was sustained by a decline in osmotic potential. Cell metabolomics also suggests that active solute accumulation was caused by a partial inhibition of wall and starch biosynthesis under HNT conditions. Because metabolites were detected in the single cells, it is concluded that a partial arrest of cell expansion observed in the inner endosperms was caused by osmotic adjustment at mild water deficit during HNT conditions.Fil: Wada, Hiroshi. Ehime University; JapónFil: Chang, Fang Yu. Ehime University; JapónFil: Hatakeyama, Yuto. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Araki, Takuya. Ehime University; JapónFil: Nakano, Hiroshi. Ehime University; JapónFil: Nonami, Hiroshi. Ehime University; Japó

    Metabolic coordination of rice seed development to nighttime warming: In-situ determination of cellular redox states using picolitre pressure-probe electrospray-ionization mass spectrometry

    Get PDF
    High night temperature (HNT) at the ripening stage severely affects both rice yield and quality. HNT accelerates embryo growth and chalky formation in the developing grains, accompanying with a diminishment of endosperm cell size. Although these responses may be physiologically interacted each other in the grains, what signals are involved in the accelerated embryo development remains undetermined. In this work, we have used picolitre pressure-probe electrospray-ionization mass spectrometry (picoPPESI-MS) to conduct single-cell metabolomics at several regions in HNT-treated grains, embryonic scutellum and outer endosperms in the basal (‘chalky region’ at maturation) and middle (‘translucent region’ at maturation as a reference) positions. Microscopic observations showed that HNT promoted cell expansion rate in the scutellum. When embryonic cell expansion rate reached the maximum, spatial differences in several metabolisms including ascorbate-glutathione (ASC-GSH) pathway and purine were detected, together with considerable sugar and amino acid accumulations in embryonic scutellum cells. There was no treatment difference in GSH content during active cell expansion in HNT-treated embryos, although an increase in GSH/GSSG ratio due to a reduction in oxidized glutathione (GSSG) content has been contrastingly observed. In the endosperms, greater ASC accumulation with a difference in ASC/dehydroascobic acid ratio has been also detected under HNT conditions. Since dormancy is often correlated with GSSG concentration, it is concluded that spatial regulation of GSH redox homeostasis detected at cell-level might be essential for dormancy alleviation and embryo growth accelerated in HNT-treated seeds.Fil: Chang, Fang-Yu. Ehime University; JapónFil: Hatakeyma, Yuto. Ehime University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Araki, Takuya. Ehime University; JapónFil: Nakano, Hiroshi. Ehime University; JapónFil: Wada, Hiroshi. Ehime University; Japó

    On-site single pollen metabolomics reveals varietal differences in phosphatidylinositol synthesis under heat stress conditions in rice

    Get PDF
    Although a loss of healthy pollen grains induced by metabolic heat responses has been indicated to be a major cause of heat-induced spikelet sterility under global climate change, to date detailed information at pollen level has been lacking due to the technical limitations. In this study, we used picolitre pressure-probe-electrospray-ionization mass spectrometry (picoPPESI-MS) to directly determine the metabolites in heat-treated single mature pollen grains in two cultivars, heat-tolerant cultivar, N22 and heat-sensitive cultivar, Koshihikari. Heat-induced spikelet fertility in N22 and Koshihikari was 90.0% and 46.8%, respectively. While no treatment difference in in vitro pollen viability was observed in each cultivar, contrasting varietal differences in phosphatidylinositol (PI)(34:3) have been detected in mature pollen, together with other 106 metabolites. Greater PI content was detected in N22 pollen regardless of the treatment, but not for Koshihikari pollen. In contrast, there was little detection for phosphoinositide in the single mature pollen grains in both cultivars. Our findings indicate that picoPPESI-MS analysis can efficiently identify the metabolites in intact single pollen. Since PI is a precursor of phosphoinositide that induces multiple signaling for pollen germination and tube growth, the active synthesis of PI(34:3) prior to germination may be closely associated with sustaining spikelet fertility even at high temperatures.Fil: Wada, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Hatakeyama, Yuto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakashima, Taiken. Hokkaido University; JapónFil: Nonami, Hiroshi. Ehime University; JapónFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Hakata, Makoto. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; JapónFil: Nakata, Keisuke. Ehime University; JapónFil: Hiraoka, Kenzo. University Of Yamanashi; JapónFil: Onda, Yayoi. Ehime University; JapónFil: Nakano, Hiroshi. Kyushu Okinawa Agricultural Research Center, National Agriculture and Food Research Organization; Japó

    Direct Profiling of Phytochemicals in Tulip Tissues and In Vivo Monitoring of the Change of Carbohydrate Content in Tulip Bulbs by Probe Electrospray Ionization Mass Spectrometry

    Get PDF
    Probe electrospray ionization (PESI) is a recently developed ESI-based ionization technique which generates electrospray from the tip of a solid needle. In this study, we have applied PESI interfaced with a time of flight mass spectrometer (TOF-MS) for direct profiling of phytochemicals in a section of a tulip bulb in different regions, including basal plate, outer and inner rims of scale, flower bud and foliage leaves. Different parts of tulip petals and leaves have also been investigated. Carbohydrates, amino acids and other phytochemicals were detected. A series of in vivo PESI-MS experiments were carried out on the second outermost scales of four living tulip bulbs to monitoring the change of carbohydrate content during the first week of initial growth. The breakdown of carbohydrates was observed which was in accordance with previous reports achieved by other techniques. This study has indicated that PESI-MS can be used for rapid and direct analysis of phytochemicals in living biological systems with advantages of low sample consumption and little sample preparation. Therefore, PESI-MS can be a new choice for direct analysis/profiling of bioactive compounds or monitoring metabolic changes in living biological systems
    corecore