3,798 research outputs found

    A calculation of the transport coefficients of hot and dense hadronic matter based on the event generator URASiMA

    Get PDF
    We evaluate thermodynamical quantities and the transport coefficients of a dense and hot hadronic matter based on the event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm) with periodic boundary conditions. As the simplest example of the transport coefficients we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter.Comment: To appear in the Proceeding of the International Conference on Quark Nuclear Physics(QNP2000), 21-25 February 2000, Adelaide, Australi

    Analyses of collective flow and space-time evolution based on relativistic hydrodynamical model

    Get PDF
    We numerically solve fully (3+1)-dimensional relativistic hydrodynamical equation with the baryon number conservation law. For realistic initial conditions we adopt the results from the event generator (URASiMA). Using this model we discuss collective flow.Comment: 4 pages, 11 figures, to apper in Proceedings of Quark Matter '9

    Charge diffusion constant in hot and dense hadronic matter - A Hadro-molecular-dynamic calculation

    Get PDF
    We evaluate charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 < E < 100 GeV/A and satisfies detailed balance at low temperatures (T < 200 MeV). For the hot and dense hadronic matter of the temperature range, 100 < T < 200 MeV and baryon number density, 0.16 < nB < 0.32 fm^-3, charge diffusion constant D gradually increases from 0.5 fm c to 2 fm c with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions.Comment: 13 pages, 4 figure

    White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides

    Get PDF
    Electron energy-loss spectrometry was employed to measure the white lines at the L23 absorption edges of the 3d transition-metal oxides and lithium transition-metal oxides. The white-line ratio (L3/L2) was found to increase between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous results for the transition metals and their oxides. The intensities of the white lines, normalized to the post-edge background, are linear for the 3d transition-metal oxides and lithium transition-metal oxides. An empirical correlation between normalized white-line intensity and 3d occupancy is established. It provides a method for measuring changes in the 3d-state occupancy. As an example, this empirical relationship is used to measure changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion decreased upon lithium deintercalation, while the cobalt valence remained constant.Comment: 6 pages, 7 figure

    An Echinococcus multilocularis coproantigen is a surface glycoprotein with unique O-gycosylation

    Get PDF
    A major surface constituent of Echinococcus multilocularis adult worms, referred to as EmA9 antigen, was immunoaffinity purified and identified as a high molecular weight glycoconjugate. Labelling studies using the monoclonal antibody MAbEmA9 indicated that this antigen undergoes a regulated expression during the development from the larval to the adult parasite. Chemical modification of carbohydrate by periodate oxidation resulted in a reduced reactivity with antigen specific antibodies. Non-reductive beta-elimination of the purified molecule indicated the presence of O-linked glycans attached to threonine residues. Carbohydrate compositional analyses indicated the presence of N- and O-glycans with the ratio of carbohydrate to protein being 1.5:1 (w/w). N- and O-linked glycans were released by hydrazinolysis and analysed as 2-aminobenzamide derivatised glycans by mass spectrometry together with HPLC and enzymatic sequencing. Novel linear O-linked saccharides with multiple beta-HexNAc extensions of reducing end Gal were identified. N-linked glycans were also detected with oligomannose and mono-, bi-, tri- and tetra-antennary type structures, most of which were found to be core-fucosylated. Taken together, the results indicate that the EmA9 antigen is a glycoprotein located at the outer surface of the adult E. multilocularis. The observation that the EmA9 antigen expression is developmentally regulated suggests an involvement of this glycoprotein in the establishment of the parasite in its canine hos

    Discrete cilia modelling with singularity distributions

    Get PDF
    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous ‘singularity models’ is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a ‘posterior tilt,’ and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 ÎŒm/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this technique to various other biological problems, particularly in the reproductive system

    Explicit Evidence Systems with Common Knowledge

    Full text link
    Justification logics are epistemic logics that explicitly include justifications for the agents' knowledge. We develop a multi-agent justification logic with evidence terms for individual agents as well as for common knowledge. We define a Kripke-style semantics that is similar to Fitting's semantics for the Logic of Proofs LP. We show the soundness, completeness, and finite model property of our multi-agent justification logic with respect to this Kripke-style semantics. We demonstrate that our logic is a conservative extension of Yavorskaya's minimal bimodal explicit evidence logic, which is a two-agent version of LP. We discuss the relationship of our logic to the multi-agent modal logic S4 with common knowledge. Finally, we give a brief analysis of the coordinated attack problem in the newly developed language of our logic

    A Calculation of Baryon Diffusion Constant in Hot and Dense Hadronic Matter Based on an Event Generator URASiMA

    Get PDF
    We evaluate thermodynamical quantities and transport coefficients of a dense and hot hadronic matter based on an event generator URASiMA (Ultra-Relativistic AA collision Simulator based on Multiple Scattering Algorithm). The statistical ensembles in equilibrium with fixed temperature and chemical potential are generated by imposing periodic boundary condition to the simulation of URASiMA, where energy density and baryon number density is conserved. Achievement of the thermal equilibrium and the chemical equilibrium are confirmed by the common value of slope parameter in the energy distributions and the saturation of the numbers of contained particles, respectively. By using the generated ensembles, we investigate the temperature dependence and the chemical potential dependence of the baryon diffusion constant of a dense and hot hadronic matter.Comment: 15 pages, 5 figures, LaTeX2
    • 

    corecore