4,998 research outputs found

    Origins of Bulk Viscosity at RHIC

    Full text link
    A variety of physical phenomena can lead to viscous effects. Several sources of shear and bulk viscosity are reviewed with an emphasis on the bulk viscosity associated with chiral restoration and with chemical non-equilibrium. We show that in a mean-field treatment of the limiting case of a second order phase transition, the bulk viscosity peaks in a singularity at the critical point.Comment: submitted to PR

    Analysis of one- and two-particle spectra at RHIC based on a hydrodynamical model

    Get PDF
    We calculate the one-particle hadronic spectra and correlation functions of pions based on a hydrodynamical model. Parameters in the model are so chosen that the one-particle spectra reproduce experimental results of s=130A\sqrt{s}=130AGeV Au+Au collisions at RHIC. Based on the numerical solution, we discuss the space-time evolution of the fluid. Two-pion correlation functions are also discussed. Our numerical solution suggests the formation of the quark-gluon plasma with large volume and low net baryon density.Comment: LaTeX, 4pages, 4 figures. To appear in the proceedings of Fourth International Conference on Physics and Astrophysics of Quark-Gluon Plasma (ICPAQGP-2001), Nov 26-30, 2001, Jaipur, Indi

    Hadronization in heavy ion collisions: Recombination and fragmentation of partons

    Full text link
    We argue that the emission of hadrons with transverse momentum up to about 5 GeV/c in central relativistic heavy ion collisions is dominated by recombination, rather than fragmentation of partons. This mechanism provides a natural explanation for the observed constant baryon-to-meson ratio of about one and the apparent lack of a nuclear suppression of the baryon yield in this momentum range. Fragmentation becomes dominant at higher transverse momentum, but the transition point is delayed by the energy loss of fast partons in dense matter.Comment: 4 pages, 2 figures; v2: reference [8] added; v3: Eq.(2) corrected, two references added, version to appear in PR

    MAESTRO, CASTRO, and SEDONA -- Petascale Codes for Astrophysical Applications

    Full text link
    Performing high-resolution, high-fidelity, three-dimensional simulations of Type Ia supernovae (SNe Ia) requires not only algorithms that accurately represent the correct physics, but also codes that effectively harness the resources of the most powerful supercomputers. We are developing a suite of codes that provide the capability to perform end-to-end simulations of SNe Ia, from the early convective phase leading up to ignition to the explosion phase in which deflagration/detonation waves explode the star to the computation of the light curves resulting from the explosion. In this paper we discuss these codes with an emphasis on the techniques needed to scale them to petascale architectures. We also demonstrate our ability to map data from a low Mach number formulation to a compressible solver.Comment: submitted to the Proceedings of the SciDAC 2010 meetin

    Angular hadron correlations probing the early medium evolution

    Get PDF
    Hard processes are a well calibrated probe to study heavy-ion collisions. However, the information to be gained from the nuclear suppression factor R_AA is limited, hene one has to study more differential observables to do medium tomography. The angular correlations of hadrons associated with a hard trigger appear suitable as they show a rich pattern when going from low p_T to high p_T. Of prime interest is the fate of away side partons with an in-medium pathlength O(several fm). At high p_T the correlations become dominated by the punchtrough of the away side parton with subsequent fragmentation. We discuss what information about the medium density can be gained from the data.Comment: Talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Hydrodynamical evolution near the QCD critical end point

    Full text link
    Hydrodynamical calculations have been successful in describing global observables in ultrarelativistic heavy ion collisions, which aim to observe the production of the quark-gluon plasma. On the other hand, recently, a lot of evidence that there exists a critical end point (CEP) in the QCD phase diagram has been accumulating. Nevertheless, so far, no equation of state with the CEP has been employed in hydrodynamical calculations. In this paper, we construct the equation of state with the CEP on the basis of the universality hypothesis and show that the CEP acts as an attractor of isentropic trajectories. We also consider the time evolution in the case with the CEP and discuss how the CEP affects the final state observables, such as the correlation length, fluctuation, chemical freezeout, kinetic freezeout, and so on. Finally, we argue that the anomalously low kinetic freezeout temperature at the BNL Relativistic Heavy Ion Collider suggests the possibility of the existence of the CEP.Comment: 13 pages, 12 figures, accepted for publication in Physical Review

    QCD matter within a quasi-particle model and the critical end point

    Full text link
    We compare our quasi-particle model with recent lattice QCD results for the equation of state at finite temperature and baryo-chemical potential. The inclusion of the QCD critical end point into models is discussed. We propose a family of equations of state to be employed in hydrodynamical calculations of particle spectra at RHIC energies and compare with the differential azimuthal anisotropy of strange and charm hadrons.Comment: talk at Quark Matter 2005, August 4 - 9, 2005, Budapest, Hungar

    Nuclear modification and elliptic flow measurements for Ď•\phi mesons at sNN\sqrt{s_{NN}} = 200 GeV d+Au and Au+Au collisions by PHENIX

    Full text link
    We report the first results of the nuclear modification factors and elliptic flow of the phi mesons measured by the PHENIX experiment at RHIC in high luminosity Au+Au collisions at sqrt(sNN) = 200 GeV. The nuclear modification factors R_AA and R_CP of the phi follow the same trend of suppression as pi0's in Au+Au collisions. In d+Au collisions at sqrt(sNN) = 200 GeV, the phi mesons are not suppressed. The elliptic flow of the phi mesons, measured in the minimum bias Au+Au events, is statistically consistent with other identified particles.Comment: 4 pages, 3 figures. Proceedings of Quark Matter 2005, Budapest, Hungar

    QGP flow fluctuations and the characteristics of higher moments

    Full text link
    The dynamical development of expanding Quark-gluon Plasma (QGP) flow is studied in a 3+1D fluid dynamical model with a globally symmetric, initial condition. We minimize fluctuations arising from complex dynamical processes at finite impact parameters and from fluctuating random initial conditions to have a conservative fluid dynamical background estimate for the statistical distributions of the thermodynamical parameters. We also avoid a phase transition in the equation of state, and we let the matter supercool during the expansion. Then central Pb+Pb collisions at sNN=2.76\sqrt{s_{NN}} = 2.76 TeV are studied in an almost perfect fluid dynamical model, with azimuthally symmetric initial state generated in a dynamical flux-tube model. The general development of thermodynamical extensives are also shown for lower energies. We observe considerable deviations from a thermal equilibrium source as a consequence of the fluid dynamical expansion arising from a least fluctuating initial state

    Charge diffusion constant in hot and dense hadronic matter - A Hadro-molecular-dynamic calculation

    Get PDF
    We evaluate charge diffusion constant of dense and hot hadronic matter based on the molecular dynamical method by using a hadronic collision generator which describes nuclear collisions at energies 10 < E < 100 GeV/A and satisfies detailed balance at low temperatures (T < 200 MeV). For the hot and dense hadronic matter of the temperature range, 100 < T < 200 MeV and baryon number density, 0.16 < nB < 0.32 fm^-3, charge diffusion constant D gradually increases from 0.5 fm c to 2 fm c with temperature and is almost independent of baryon number density. Based on the obtained diffusion constant we make simple discussions on the diffusion of charge fluctuation in ultrarelativistic nuclear collisions.Comment: 13 pages, 4 figure
    • …
    corecore