312 research outputs found
Superconductivity from doping a spin liquid insulator: a simple one-dimensional example
We study the phase diagram of a one-dimensional Hubbard model where, in
addition to the standard nearest neighbor hopping , we also include a
next-to-nearest neighbor hopping . For strong enough on-site repulsion,
this model has a transition at half filling from a magnetic insulator with
gapless spin excitations at small to a dimerized insulator with a spin
gap at larger . We show that upon doping this model exhibits quite
interesting features, which include the presence of a metallic phase with a
spin gap and dominant superconducting fluctuations, in spite of the repulsive
interaction. More interestingly, we find that this superconducting phase can be
reached upon hole doping the magnetic insulator. The connections between this
model and the two chain models, recently object of intensive investigations,
are also discussed.Comment: 19 pages, plain LaTex using RevTex, 7 postscript figures Modified
version which excludes some LaTex commands giving problems for the previous
versio
Interface superconductivity in the eutectic Sr2RuO4-Ru: 3-K phase of Sr2RuO4
The eutectic system Sr2RuO4-Ru is referred to as the 3-K phase of the
spin-triplet supeconductor Sr2RuO4 because of its enhanced superconducting
transition temperature Tc of ~3 K. We have investigated the field-temperature
(H-T) phase diagram of the 3-K phase for fields parallel and perpendicular to
the ab-plane of Sr2RuO4, using out-of-plane resistivity measurements. We have
found an upturn curvature in the Hc2(T) curve for H // c, and a rather gradual
temperature dependence of Hc2 close to Tc for both H // ab and H // c. We have
also investigated the dependence of Hc2 on the angle between the field and the
ab-plane at several temperatures. Fitting the Ginzburg-Landau effective-mass
model apparently fails to reproduce the angle dependence, particularly near H
// c and at low temperatures. We propose that all of these charecteric features
can be explained, at least in a qualitative fashion, on the basis of a theory
by Sigrist and Monien that assumes surface superconductivity with a
two-component order parameter occurring at the interface between Sr2RuO4 and Ru
inclusions. This provides evidence of the chiral state postulated for the 1.5-K
phase by several experiments.Comment: 7 pages and 5 figs; accepted for publication in Phys. Rev.
Algebraic Structures and Eigenstates for Integrable Collective Field Theories
Conditions for the construction of polynomial eigen--operators for the
Hamiltonian of collective string field theories are explored. Such
eigen--operators arise for only one monomial potential in the
collective field theory. They form a --algebra isomorphic to the
algebra of vertex operators in 2d gravity. Polynomial potentials of orders only
strictly larger or smaller than 2 have no non--zero--energy polynomial
eigen--operators. This analysis leads us to consider a particular potential
. A Lie algebra of polynomial eigen--operators is then
constructed for this potential. It is a symmetric 2--index Lie algebra, also
represented as a sub--algebra of Comment: 27 page
Antiferromagnetic Zigzag Spin Chain in Magnetic Fields at Finite Temperatures
We study thermodynamic behaviors of the antiferromagnetic zigzag spin chain
in magnetic fields, using the density-matrix renormalization group method for
the quantum transfer matrix. We focus on the thermodynamics of the system near
the critical fields in the ground-state magnetization process(- curve):
the saturation field, the lower critical field associated with excitation gap,
and the field at the middle-field cusp singularity. We calculate magnetization,
susceptibility and specific heat of the zigzag chain in magnetic fields at
finite temperatures, and then discuss how the calculated quantities reflect the
low-lying excitations of the system related with the critical behaviors in the
- curve.Comment: accepted for publication in Physical Review
Astrophysical Uncertainties in the Cosmic Ray Electron and Positron Spectrum From Annihilating Dark Matter
In recent years, a number of experiments have been conducted with the goal of
studying cosmic rays at GeV to TeV energies. This is a particularly interesting
regime from the perspective of indirect dark matter detection. To draw reliable
conclusions regarding dark matter from cosmic ray measurements, however, it is
important to first understand the propagation of cosmic rays through the
magnetic and radiation fields of the Milky Way. In this paper, we constrain the
characteristics of the cosmic ray propagation model through comparison with
observational inputs, including recent data from the CREAM experiment, and use
these constraints to estimate the corresponding uncertainties in the spectrum
of cosmic ray electrons and positrons from dark matter particles annihilating
in the halo of the Milky Way.Comment: 21 pages, 9 figure
Observational diagnostics of gas in protoplanetary disks
Protoplanetary disks are composed primarily of gas (99% of the mass).
Nevertheless, relatively few observational constraints exist for the gas in
disks. In this review, I discuss several observational diagnostics in the UV,
optical, near-IR, mid-IR, and (sub)-mm wavelengths that have been employed to
study the gas in the disks of young stellar objects. I concentrate in
diagnostics that probe the inner 20 AU of the disk, the region where planets
are expected to form. I discuss the potential and limitations of each gas
tracer and present prospects for future research.Comment: Review written for the proceedings of the conference "Origin and
Evolution of Planets 2008", Ascona, Switzerland, June 29 - July 4, 2008. Date
manuscript: October 2008. 17 Pages, 6 graphics, 134 reference
Is upper gastrointestinal radiography a cost-effective alternative to a Helicobacter pylori “Test and Treat” strategy for patients with suspected peptic ulcer disease?
Current clinical consensus supports an initial Helicobacter pylori (HP) “test and treat” approach when compared to immediate endoscopy for patients with suspected peptic ulcer disease. Alternative diagnostic approaches that incorporate upper GI radiography (UGI) have not been previously evaluated. We sought to determine the cost effectiveness of UGI compared to a HP test and treat strategy, incorporating recent data addressing the reduced prevalence of HP, lower cost of diagnostic interventions, and reduced attribution of PUD to HP. METHODS : Using decision analysis, three diagnostic and treatment strategies were evaluated: 1) Test and Treat —initial HP serology, treat patients who test positive with HP eradication and antiulcer therapy; 2) Initial UGI series —treat all patients with documented ulcer disease with HP eradication and antiulcer therapy; and 3) Initial UGI series, HP serology if ulcer present — treat ulcer and HP based on diagnostic test results. RESULTS : The estimated cost per ulcer cured for each strategy were as follows: test and treat, 3,690; and UGI with serology, 498; initial UGI, 620. When UGI reimbursement was decreased to less than $50, the UGI strategies yielded a lower cost per patient treated than the test and treat strategy. CONCLUSION : At the current level of reimbursement, UGI should not be considered a cost-effective alternative to the HP test and treat strategy for the initial evaluation of patients with suspected peptic ulcer disease.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73722/1/j.1572-0241.2000.01837.x.pd
Collectivity at the prolate-oblate transition:the 2<sub>1</sub><sup>+</sup> lifetime of <sup>190</sup>W
The neutron-rich rare isotope 190W is discussed as a candidate for a prolate-oblate transitional nucleus with maximum γ-softness. The collectivity of this isotope is assessed for the first time by the measurement of the reduced E2 transition probability of its first 2+ state to the ground state. The experiment employed the FAst TIming Array (FATIMA), comprised of 36 LaBr3(Ce) scintillators, which was part of the DESPEC setup at GSI, Darmstadt. The 41+ and 21+ states of 190W were populated subsequently to the decay of its 127(12) μs isomeric Jπ = 10- state. The mean lifetime of the 21+ state was determined to be τ = 274(28) ps, which corresponds to a B(E2; 21+ → 01+) value of 95(10) W.u. The results motivated a revision of previous calculations within an energy-density functional-based interacting boson model-2 approach, yielding E2 transition properties and spectroscopic quadrupole moments for tungsten isotopes. From comparison to theory, the new data suggest that 190W is at the transition from prolate to oblate structure along the W isotopic chain, which had previously been discussed as a nuclear shape-phase transition
- …