6 research outputs found

    Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire

    No full text
    Repeated Plasmodium falciparum infections drive the development of clinical immunity to malaria in humans; however, the immunological mechanisms that underpin this response are only partially understood. We investigated the impact of repeated P. falciparum infections on human γδ T cells in the context of natural infection in Malian children and adults, as well as serial controlled human malaria infection (CHMI) of U.S. adults, some of whom became clinically immune to malaria. In contrast to the predominant Vδ2+ T cell population in malaria-naïve Australian individuals, clonally expanded cytotoxic Vδ1effector T cells were enriched in the γδ T cell compartment of Malian subjects. Malaria-naïve U.S. adults exposed to four sequential CHMIs defined the precise impact of P. falciparum on the γδ T cell repertoire. Specifically, innate-like Vδ2+ T cells exhibited an initial robust polyclonal response to P. falciparum infection that was not sustained with repeated infections, whereas Vδ1+ T cells increased in frequency with repeated infections. Moreover, repeated P. falciparum infection drove waves of clonal selection in the Vδ1+ T cell receptor repertoire that coincided with the differentiation of Vδ1naïve T cells into cytotoxic Vδ1effector T cells. Vδ1+ T cells of malaria-exposed Malian and U.S. individuals were licensed for reactivity to P. falciparum parasites in vitro. Together, our study indicates that repeated P. falciparum infection drives the clonal expansion of an adaptive γδ T cell repertoire and establishes a role for Vδ1+ T cells in the human immune response to malaria

    Repeat controlled human Plasmodium falciparum infections delay bloodstream patency and reduce symptoms

    No full text
    Abstract Resistance to clinical malaria takes years to develop even in hyperendemic regions and sterilizing immunity has rarely been observed. To evaluate the maturation of the host response against controlled repeat exposures to P. falciparum (Pf) NF54 strain-infected mosquitoes, we systematically monitored malaria-naïve participants through an initial exposure to uninfected mosquitoes and 4 subsequent homologous exposures to Pf-infected mosquitoes over 21 months (n = 8 males) (ClinicalTrials.gov# NCT03014258). The primary outcome was to determine whether protective immunity against parasite infection develops following repeat CHMI and the secondary outcomes were to track the clinical signs and symptoms of malaria and anti-Pf antibody development following repeat CHMI. After two exposures, time to blood stage patency increases significantly and the number of reported symptoms decreases indicating the development of clinical tolerance. The time to patency correlates positively with both anti-Pf circumsporozoite protein (CSP) IgG and CD8 + CD69+ effector memory T cell levels consistent with partial pre-erythrocytic immunity. IFNγ levels decrease significantly during the participants’ second exposure to high blood stage parasitemia and could contribute to the decrease in symptoms. In contrast, CD4-CD8 + T cells expressing CXCR5 and the inhibitory receptor, PD-1, increase significantly after subsequent Pf exposures, possibly dampening the memory response and interfering with the generation of robust sterilizing immunity

    Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency

    No full text
    Retroviral gene therapy can restore immunity to infants with X-linked severe combined immunodeficiency (XSCID) caused by mutations in the IL2RG gene encoding the common gamma chain (γc) of receptors for interleukins 2 (IL-2), −4, −7, −9, −15, and −21. We investigated the safety and efficacy of gene therapy as salvage treatment for older XSCID children with inadequate immune reconstitution despite prior bone marrow transplant from a parent. Subjects received retrovirus-transduced autologous peripherally mobilized CD34+ hematopoietic cells. T-cell function significantly improved in the youngest subject (age 10 years), and multilineage retroviral marking occurred in all 3 children
    corecore