35 research outputs found

    Lfc and Lsc Oncoproteins Represent Two New Guanine Nucleotide Exchange Factors for the Rho GTP-binding Protein

    Get PDF
    Lfc and Lsc are two recently identified oncoproteins that contain a Dbl homology domain in tandem with a pleckstrin homology domain and thus share sequence similarity with a number of other growth regulatory proteins including Dbl, Tiam-1, and Lbc. We show here that Lfc and Lsc, like their closest relative Lbc, are highly specific guanine nucleotide exchange factors (GEFs) for Rho, causing a >10-fold stimulation of [3H]GDP dissociation from Rho and a marked stimulation of GDP-[35S]GTPgammas (guanosine 5'-O-(3-thiotriphosphate) exchange. All three proteins (Lbc, Lfc, and Lsc) are able to act catalytically in stimulating the guanine nucleotide exchange activity, such that a single molecule of each of these oncoproteins can activate a number of molecules of Rho. Neither Lfc nor Lsc shows any ability to stimulate GDP dissociation from other related GTP-binding proteins such as Rac, Cdc42, or Ras. Thus Lbc, Lfc, and Lsc appear to represent a subgroup of Dbl-related proteins that function as highly specific GEFs toward Rho and can be distinguished from Dbl, Ost, and Dbs which are less specific and show GEF activity toward both Rho and Cdc42. Consistent with these results, Lbc, Lfc, and Lsc each form tight complexes with the guanine nucleotide-depleted form of Rho and bind weakly to the GDP- and GTPgammaS-bound states. None of these oncoproteins are able to form complexes with Cdc42 or Ras. However, Lfc (but not Lbc nor Lsc) can bind to Rac, and this binding occurs equally well when Rac is nucleotide-depleted or is in the GDP- or GTPgammaS-bound state. These findings raise the possibility that in addition to acting directly as a GEF for Rho, Lfc may play other roles that influence the signaling activities of Rac and/or coordinate the activities of the Rac and Rho proteins

    In Situ Kinase Profiling Reveals Functionally Relevant Properties of Native Kinases

    Get PDF
    SummaryProtein kinases are intensely studied mediators of cellular signaling, yet important questions remain regarding their regulation and in vivo properties. Here, we use a probe-based chemoprotemics platform to profile several well studied kinase inhibitors against >200 kinases in native cell proteomes and reveal biological targets for some of these inhibitors. Several striking differences were identified between native and recombinant kinase inhibitory profiles, in particular, for the Raf kinases. The native kinase binding profiles presented here closely mirror the cellular activity of these inhibitors, even when the inhibition profiles differ dramatically from recombinant assay results. Additionally, Raf activation events could be detected on live cell treatment with inhibitors. These studies highlight the complexities of protein kinase behavior in the cellular context and demonstrate that profiling with only recombinant/purified enzymes can be misleading

    High-resolution crystal structure of human asparagine synthetase enables analysis of inhibitor binding and selectivity

    Get PDF
    Expression of human asparagine synthetase (ASNS) promotes metastatic progression and tumor cell invasiveness in colorectal and breast cancer, presumably by altering cellular levels of L-asparagine. Human ASNS is therefore emerging as a bona fide drug target for cancer therapy. Here we show that a slow-onset, tight binding inhibitor, which exhibits nanomolar affinity for human ASNS in vitro, exhibits excellent selectivity at 10 μM concentration in HCT-116 cell lysates with almost no off-target binding. The high-resolution (1.85 Å) crystal structure of human ASNS has enabled us to identify a cluster of negatively charged side chains in the synthetase domain that plays a key role in inhibitor binding. Comparing this structure with those of evolutionarily related AMP-forming enzymes provides insights into intermolecular interactions that give rise to the observed binding selectivity. Our findings demonstrate the feasibility of developing second generation human ASNS inhibitors as lead compounds for the discovery of drugs against metastasis

    Fluorescence Assays of Cdc42 Interactions with Target/Effector Proteins †

    No full text
    corecore