14 research outputs found

    A geographer's view at international fishery and environmental education

    No full text

    Exploring Pandora's Box: potential and pitfalls of low coverage genome surveys for evolutionary biology

    Get PDF
    High throughput sequencing technologies are revolutionizing genetic research. With this ‘‘rise of the machines’’, genomic sequences can be obtained even for unknown genomes within a short time and for reasonable costs. This has enabled evolutionary biologists studying genetically unexplored species to identify molecular markers or genomic regions of interest (e.g. micro- and minisatellites, mitochondrial and nuclear genes) by sequencing only a fraction of the genome. However, when using such datasets from non-model species, it is possible that DNA from non-target contaminant species such as bacteria, viruses, fungi, or other eukaryotic organisms may complicate the interpretation of the results. In this study we analysed 14 genomic pyrosequencing libraries of aquatic non-model taxa from four major evolutionary lineages. We quantified the amount of suitable micro- and minisatellites, mitochondrial genomes, known nuclear genes and transposable elements and searched for contamination from various sources using bioinformatic approaches. Our results show that in all sequence libraries with estimated coverage of about 0.02–25%, many appropriate micro- and minisatellites, mitochondrial gene sequences and nuclear genes from different KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways could be identified and characterized. These can serve as markers for phylogenetic and population genetic analyses. A central finding of our study is that several genomic libraries suffered from different biases owing to non-target DNA or mobile elements. In particular, viruses, bacteria or eukaryote endosymbionts contributed significantly (up to 10%) to some of the libraries analysed. If not identified as such, genetic markers developed from high-throughput sequencing data for non-model organisms may bias evolutionary studies or fail completely in experimental tests. In conclusion, our study demonstrates the enormous potential of low-coverage genome survey sequences and suggests bioinformatic analysis workflows. The results also advise a more sophisticated filtering for problematic sequences and non-target genome sequences prior to developing markers

    Theoretical foundations of human decision-making in agent-based land use models – A review

    Get PDF
    Recent reviews stated that the complex and context-dependent nature of human decision-making resulted in ad-hoc representations of human decision in agent-based land use change models (LUCC ABMs) and that these representations are often not explicitly grounded in theory. However, a systematic survey on the characteristics (e.g. uncertainty, adaptation, learning, interactions and heterogeneities of agents) of representing human decision-making in LUCC ABMs is missing. Therefore, the aim of this study is to inform this debate by reviewing 134 LUCC ABM papers. We show that most human decision sub-models are not explicitly based on a specific theory and if so they are mostly based on economic theories, such as the rational actor, and mainly ignoring other relevant disciplines. Consolidating and enlarging the theoretical basis for modelling human decision-making may be achieved by using a structural framework for modellers, re-using published decision models, learning from other disciplines and fostering collaboration with social scientists
    corecore