313 research outputs found

    Infant mortality trends in a region of Belarus, 1980–2000

    Get PDF
    BACKGROUND: The Chernobyl disaster in 1986 and the breakup of the former Soviet Union (FSU) in 1991 challenged the public health infrastructure in the former Soviet republic of Belarus. Because infant mortality is regarded as a sensitive measure of the overall health of a population, patterns of neonatal and postneonatal deaths were examined within the Mogilev region of Belarus between 1980 and 2000. METHODS: Employing administrative death files, this study utilized a regional cohort design that included all infant deaths occurring among persons residing within the Mogilev oblast of Belarus between 1980 and 2000. Patterns of death and death rates were examined across 3 intervals: 1980–1985 (pre-Chernobyl), 1986–1991 (post-Chernobyl & pre-FSU breakup), and 1992–2000 (post-Chernobyl & post-FSU breakup). RESULTS: Annual infant mortality rates declined during the 1980s, increased during the early 1990s, and have remained stable thereafter. While infant mortality rates in Mogilev have decreased since the period 1980–1985 among both males and females, this decrement appears due to decreases in postneonatal mortality. Rates of postneonatal mortality in Mogilev have decreased since the period 1980–1985 among both males and females. Analyses of trends for infant mortality and neonatal mortality demonstrated continuous decreases between 1990, followed by a bell-shaped excess in the 1990's. Compared to rates of infant mortality for other countries, rates in the Mogilev region are generally higher than rates for the United States, but lower than rates in Russia. During the 1990s, rates for both neonatal and postneonatal mortality in Mogilev were two times the comparable rates for East and West Germany. CONCLUSIONS: While neonatal mortality rates in Mogilev have remained stable, rates for postneonatal mortality have decreased among both males and females during the period examined. Infant mortality rates in the Mogilev region of Belarus remain elevated compared to rates for other western countries, but lower than rates in Russia. The public health infrastructure might attempt to assure that prenatal, maternal, and postnatal care is maximized

    Extracellular NAD and ATP: Partners in immune cell modulation

    Get PDF
    Extracellular NAD and ATP exert multiple, partially overlapping effects on immune cells. Catabolism of both nucleotides by extracellular enzymes keeps extracellular concentrations low under steady-state conditions and generates metabolites that are themselves signal transducers. ATP and its metabolites signal through purinergic P2 and P1 receptors, whereas extracellular NAD exerts its effects by serving as a substrate for ADP-ribosyltransferases (ARTs) and NAD glycohydrolases/ADPR cyclases like CD38 and CD157. Both nucleotides activate the P2X7 purinoceptor, although by different mechanisms and with different characteristics. While ATP activates P2X7 directly as a soluble ligand, activation via NAD occurs by ART-dependent ADP-ribosylation of cell surface proteins, providing an immobilised ligand. P2X7 activation by either route leads to phosphatidylserine exposure, shedding of CD62L, and ultimately to cell death. Activation by ATP requires high micromolar concentrations of nucleotide and is readily reversible, whereas NAD-dependent stimulation begins at low micromolar concentrations and is more stable. Under conditions of cell stress or inflammation, ATP and NAD are released into the extracellular space from intracellular stores by lytic and non-lytic mechanisms, and may serve as ‘danger signals–to alert the immune response to tissue damage. Since ART expression is limited to naïve/resting T cells, P2X7-mediated NAD-induced cell death (NICD) specifically targets this cell population. In inflamed tissue, NICD may inhibit bystander activation of unprimed T cells, reducing the risk of autoimmunity. In draining lymph nodes, NICD may eliminate regulatory T cells or provide space for the preferential expansion of primed cells, and thus help to augment an immune response

    Improving Outcomes in Infants of HIV-Infected Women in a Developing Country Setting

    Get PDF
    Since 1999 GHESKIO, a large voluntary counseling and HIV testing center in Port-au-Prince, Haiti, has had an ongoing collaboration with the Haitian Ministry of Health to reduce the rate of mother to child HIV transmission. There are limited data on the ability to administer complex regimens for reducing mother to child transmission and on risk factors for continued transmission and infant mortality within programmatic settings in developing countries.We analyzed data from 551 infants born to HIV-infected mothers seen at GHESKIO, between 1999 and 2005. HIV-infected mothers and their infants were given "short-course" monotherapy with antiretrovirals for prophylaxis; and, since 2003, highly active antiretroviral therapy (HAART) when clinical or laboratory indications were met. Infected women seen in the pre-treatment era had 27% transmission rates, falling to 10% in this cohort of 551 infants, and to only 1.9% in infants of women on HAART. Mortality rate after HAART introduction (0.12 per year of follow-up [0.08-0.16]) was significantly lower than the period before the availability of such therapy (0.23 [0.16-0.30], P<0.0001). The effects of maternal health, infant feeding, completeness of prophylaxis, and birth weight on mortality and transmission were determined using univariate and multivariate analysis. Infant HIV-1 infection and low birth weight were associated with infant mortality in less than 15 month olds in multivariate analysis.Our findings demonstrate success in prevention of mother-to-child HIV transmission and mortality in a highly resource constrained setting. Elements contributing to programmatic success include provision of HAART in the context of a comprehensive program with pre and postnatal care for both mother and infant

    Individual Human Brain Areas Can Be Identified from Their Characteristic Spectral Activation Fingerprints

    Get PDF
    The human brain can be parcellated into diverse anatomical areas. We investigated whether rhythmic brain activity in these areas is characteristic and can be used for automatic classification. To this end, resting-state MEG data of 22 healthy adults was analysed. Power spectra of 1-s long data segments for atlas-defined brain areas were clustered into spectral profiles (“fingerprints”), using k-means and Gaussian mixture (GM) modelling. We demonstrate that individual areas can be identified from these spectral profiles with high accuracy. Our results suggest that each brain area engages in different spectral modes that are characteristic for individual areas. Clustering of brain areas according to similarity of spectral profiles reveals well-known brain networks. Furthermore, we demonstrate task-specific modulations of auditory spectral profiles during auditory processing. These findings have important implications for the classification of regional spectral activity and allow for novel approaches in neuroimaging and neurostimulation in health and disease

    Expression and Rhythmic Modulation of Circulating MicroRNAs Targeting the Clock Gene Bmal1 in Mice

    Get PDF
    MicroRNAs (miRNAs) interact with 3′ untranslated region (UTR) elements of target genes to regulate mRNA stability or translation and thus play a role in regulating many different biological processes, including circadian rhythms. However, specific miRNAs mediating the regulation of essential clock genes remain largely unknown. Because vesicles containing membrane-bound miRNAs are present in the circulatory system, we examined miRNAs predicted to target the clock gene, Bmal1, for evidence of rhythmic fluctuations in circulating levels and modulatory effects on the 3′ UTR activity of Bmal1. A number of miRNAs with Bmal1 as a predicted target were expressed in the serum of mice exposed to LD 12∶12 and of these miRNAs, miR-152 and miR-494 but not miR-142-3p were marked by diurnal oscillations with bimodal peaks in expression occurring near the middle of the day and 8 or 12 hr later during the night. Co-transfection of pre-miR over-expression constructs for miR-494 and miR-142-3p in HEK293 cells had significant effects in repressing luciferase-reported Bmal1 3′ UTR activity by as much as 60%, suggesting that these miRNAs may function as post-transcriptional modulators of Bmal1. In conjunction with previous studies implicating miRNAs as extracellular regulatory signals, our results suggest that circulating miRNAs may play a role in the regulation of the molecular clockworks in peripheral circadian oscillators

    Disrupted lymph node and splenic stroma in mice with induced inflammatory melanomas is associated with impaired recruitment of T and dendritic cells

    Get PDF
    International audienceMigration of dendritic cells (DC) from the tumor environment to the T cell cortex in tumor-draining lymph nodes (TDLN) is essential for priming naïve T lymphocytes (TL) to tumor antigen (Ag). We used a mouse model of induced melanoma in which similar oncogenic events generate two phenotypically distinct melanomas to study the influence of tumor-associated inflammation on secondary lymphoid organ (SLO) organization. One tumor promotes inflammatory cytokines, leading to mobilization of immature myeloid cells (iMC) to the tumor and SLO; the other does not. We report that inflammatory tumors induced alterations of the stromal cell network of SLO, profoundly altering the distribution of TL and the capacity of skin-derived DC and TL to migrate or home to TDLN. These defects, which did not require tumor invasion, correlated with loss of fibroblastic reticular cells in T cell zones and in impaired production of CCL21. Infiltrating iMC accumulated in the TDLN medulla and the splenic red pulp. We propose that impaired function of the stromal cell network during chronic inflammation induced by some tumors renders spleens non-receptive to TL and TDLN non-receptive to TL and migratory DC, while the entry of iMC into these perturbed SLO is enhanced. This could constitute a mechanism by which inflammatory tumors escape immune control. If our results apply to inflammatory tumors in general, the demonstration that SLO are poorly receptive to CCR7-dependent migration of skin-derived DC and naïve TL may constitute an obstacle for proposed vaccination or adoptive TL therapies of their hosts

    Evidence for 'critical slowing down' in seagrass:a stress gradient experiment at the southern limit of its range

    Get PDF
    The theory of critical slowing down, i.e. the increasing recovery times of complex systems close to tipping points, has been proposed as an early warning signal for collapse. Empirical evidence for the reality of such warning signals is still rare in ecology. We studied this on Zostera noltii intertidal seagrass meadows at their southern range limit, the Banc d'Arguin, Mauritania. We analyse the environmental covariates of recovery rates using structural equation modelling (SEM), based on an experiment in which we assessed whether recovery after disturbances (i.e. seagrass & infauna removal) depends on stress intensity (increasing with elevation) and disturbance patch size (1 m(2) vs. 9 m(2)). The SEM analyses revealed that higher biofilm density and sediment accretion best explained seagrass recovery rates. Experimental disturbances were followed by slow rates of recovery, regrowth occurring mainly in the coolest months of the year. Macrofauna recolonisation lagged behind seagrass recovery. Overall, the recovery rate was six times slower in the high intertidal zone than in the low zone. The large disturbances in the low zone recovered faster than the small ones in the high zone. This provides empirical evidence for critical slowing down with increasing desiccation stress in an intertidal seagrass system

    NIOX VERO: Individualized Asthma Management in Clinical Practice

    Get PDF
    As we move toward an era of precision medicine, novel biomarkers of disease will enable the identification and personalized treatment of new endotypes. In asthma, fractional exhaled nitric oxide (FeNO) serves as a surrogate marker of airway inflammation that often correlates with the presence of sputum eosinophils. The increase in FeNO is driven by an upregulation of inducible nitric oxide synthase (iNOS) by cytokines, which are released as a result of type-2 airway inflammation. Scientific evidence supports using FeNO in routine clinical practice. In steroid-naive patients and in patients with mild asthma, FeNO levels decrease within days after corticosteroid treatment in a dose-dependent fashion and increase after steroid withdrawal. In difficult asthma, FeNO testing correlates with anti-inflammatory therapy compliance. Assessing adherence by FeNO testing can remove the confrontational aspect of questioning a patient about compliance and change the conversation to one of goal setting and ways to improve disease management. However, the most important aspect of incorporating FeNO in asthma management is the reduction in the risk of exacerbations. In a recent primary care study, reduction of exacerbation rates and improved symptom control without increasing overall inhaled corticosteroid (ICS) use were demonstrated when a FeNO-guided anti-inflammatory treatment algorithm was assessed and compared to the standard care. A truly personalized asthma management approach—showing reduction of exacerbation rates, overall use of ICS and neonatal hospitalizations—was demonstrated when FeNO testing was applied as part of the treatment algorithm that managed asthma during pregnancy. The aim of this article is to describe how FeNO and the NIOX VERO® analyzer can help to optimize diagnosis and treatment choices and to aid in the monitoring and improvement of clinical asthma outcomes in children and adults
    corecore