969 research outputs found

    The nature of interfaces and charge trapping sites in photocatalytic mixed-phase TiO2 from first principles modeling

    Get PDF
    Mixed phase rutile/anatase catalysts show increased reactivity compared with the pure phases alone. However, the mechanism causing this effect is not fully understood. The electronic properties of the interface and the relative energy of the electron in each phase play a key role in lowering the rate of recombination of electron hole pairs. Using density functional theory and the +U correction, we calculated the bands offsets between the phases taking into account the effect of the interface. Our model included several thousands atoms, and thus is a good representation of an interface between actual nanoparticles. We found rutile to have both higher conduction and valence band offsets than rutile, leading to an accumulation of electrons in the anatase phase accompanied by hole accumulation in the rutile phase. We also probed the electronic structure of our heterostructure and found a gap state caused by electrons localized in undercoordinated Ti atoms which were present within the interfacial region. Interfaces between bulk materials and between exposed surfaces both showed electron trapping at undercoordinated sites. These undercoordinated (typically four) atoms present localized electrons that could enable reduction reactions in the interfacial region, and could explain the increased reactivity of mixed-phase TiO2 photocatalyst materials

    Revisiting OSIRIS-REx Touch-And-Go (TAG) Performance Given the Realities of Asteroid Bennu

    Get PDF
    The Origins, Spectral Interpretation, Resource Identification, and SecurityRegolith Explorer (OSIRIS-REx) mission is a NASA New Frontiers mission that launched in 2016 and rendezvoused with the near-Earth asteroid (101955) Bennu in late 2018. Upon arrival, the surface of Bennu was found to be much rockier than expected. The original Touch-and-Go (TAG) requirement for sample collection was to deliver the spacecraft to a site with a 25-meter radius; however, the largest hazard-free sites are no larger than 8 meters in radius. To accommodate the dearth of safe sample collection sites, the project reevaluated all aspects of flight system performance pertaining to TAG in order to account for the demonstrated performance of the spacecraft and navigation prediction accuracies. More-over, the project has base lined on board natural feature tracking instead of lidar for providing the on board navigation state update during the TAG sequence. This paper summarizes the improvements in error source estimation, enhancements in on board trajectory correction, and results of recent Monte Carlo simulation to en-able sample collection with the given constraints. TAG delivery and on board navigation performance are presented for the final four candidate TAG sites

    Polymorphisms in the circadian expressed genes PER3 and ARNTL2 are associated with diurnal preference and GNÎČ3 with sleep measures

    Get PDF
    Sleep and circadian rhythms are intrinsically linked, with several sleep traits, including sleep timing and duration, influenced by both sleep homeostasis and the circadian phase. Genetic variation in several circadian genes has been associated with diurnal preference (preference in timing of sleep), although there has been limited research on whether they are associated with other sleep measurements. We investigated whether these genetic variations were associated with diurnal preference (Morningness-Eveningness Questionnaire) and various sleep measures, including: the global Pittsburgh Sleep Quality index score; sleep duration; and sleep latency and sleep quality. We genotyped 10 polymorphisms in genes with circadian expression in participants from the G1219 sample (n = 966), a British longitudinal population sample of young adults. We conducted linear regressions using dominant, additive and recessive models of inheritance to test for associations between these polymorphisms and the sleep measures. We found a significant association between diurnal preference and a polymorphism in period homologue 3 (PER3) (P < 0.005, recessive model) and a novel nominally significant association between diurnal preference and a polymorphism in aryl hydrocarbon receptor nuclear translocator-like 2 (ARNTL2) (P < 0.05, additive model). We found that a polymorphism in guanine nucleotide binding protein beta 3 (GNÎČ3) was associated significantly with global sleep quality (P < 0.005, recessive model), and that a rare polymorphism in period homologue 2 (PER2) was associated significantly with both sleep duration and quality (P < 0.0005, recessive model). These findings suggest that genes with circadian expression may play a role in regulating both the circadian clock and sleep homeostasis, and highlight the importance of further studies aimed at dissecting the specific roles that circadian genes play in these two interrelated but unique behaviours

    Local interfacial structure influences charge localization in titania composites: Beyond the band alignment paradigm

    Get PDF
    The phase junction of nanocomposite materials is key to enhanced performance but is largely ignored in recent theoretical examinations of photocatalytic interactions in titania-based composites. Computational advances now allow more precise modeling of the electronic and optical properties of composites, and focusing on mixed-phase TiO2 as a model, we use density functional theory (DFT) to interrogate the essential structural feature, namely, the rutile anatase interface, and its relationship to photogenerated charge localization, bulk band alignments, and defect formation. The interfacial region is disordered and distinct from rutile and anatase and contains low coordinated Ti sites and oxygen vacancies, both drivers of charge localization. The relaxations of the interface upon formation of excited electrons and holes determine the final location of charges which cannot always be predicted from bulk band alignments. A detailed understanding of the interfacial phase junction lays the foundation for directed synthesis of highly active and efficient composite photocatalysts

    Evaluation of denoising strategies to address motion-correlated artifacts in resting-state functional magnetic resonance imaging data from the human connectome roject

    Get PDF
    Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR

    Evaluation of Alternative Market Organizations for Hawaii's Beef Industry

    Get PDF
    • 

    corecore