308 research outputs found
CSLINC: A Nationwide CS MOOC for Second-level Students
This poster introduces CSLINC, a free scaffolded MOOC framework tailored to second-level students in Ireland that consists of: an online platform built for accessibility; a suite of modules developed upon international best practices with varying co-creators; and automated assessment and certificates of completion. Its aim is to provide content to promote national CS curricula to all second-level students in Ireland. In September 2021, CSLINC launched to 10,000 students across 100 schools. Future work will include collecting and collating research to validate CSLINC’s goals, scaffolding that will build foundations for national curriculum learning outcomes, and measure its impact on students, their perceptions and follow on CS uptake at second-level in Ireland.https://arrow.tudublin.ie/cddpos/1012/thumbnail.jp
Computer Science Outreach to Inform Secondary School Students’ Perceptions of Computer Science: Preliminary Findings
This poster describes a longitudinal K-12 outreach programme to promote Computer Science in Ireland, which ran over a three-year period from 2017- 2020. A pilot phase was conducted in the first year from 2017-2018 with 2900 students participating. The implementation phase began in 2018, when 7320 students participated across the 2018-2019 and 2019-2020 academic years. The programme consisted of a free onsite school delivery of a two-hour camp that introduced students to a range of Computing topics: addressing computing perceptions, introduction to coding, and exploration of computational thinking. Schools self-selected, and the programme reached a large number of schools with varied socio-economic and gender diversity, along with schools across every county in Ireland. The student ages ranged from third class (7 - 8 years old) in primary school to sixth year in second level (17 - 18 years old). This poster focuses specifically on the research data collected during the implementation phase (N=1211) from secondary school students (12 - 18 years old) not enrolled in the formal Leaving Certificate Computer Science subject. Looking at student perceptions of Computer Science and if the outreach positively impacted those perceptions and built student interest in pursuing further study in Computer Science.https://arrow.tudublin.ie/cddpos/1011/thumbnail.jp
Source and microenvironmental regulation of erythropoietin in the kidney
We hypothesize that REP cells are neuron-like setpoint providers and controllers, which integrate information about blood O2 concentration and local O2 consumption via tissue pO2, and combine these inputs with intrinsic negative feedback loops and perhaps tubular cross-talk, converging in Epo regulation
Most soil trophic guilds increase plant growth: a meta-analytical review
Trophic cascades are important drivers of plant and animal abundances in aquatic and aboveground systems, but in soils trophic cascades have been thought to be of limited importance due to omnivory and other factors. Here we use a meta-analysis of 215 studies with 1526 experiments that measured plant growth responses to additions or removals of soil organisms to test how different soil trophic levels affect plant growth. Consistent with the trophic cascade hypothesis, we found that herbivores and plant pathogens (henceforth pests) decreased plant growth and that predators of pests increased plant growth. The magnitude of this trophic cascade was similar to that reported for aboveground systems. In contrast, we did not find evidence for trophic cascades in decomposer- and symbiont-based (henceforth mutualist) food chains. In these food chains, mutualists increased plant growth and predators of mutualists also increased plant growth, presumably by increasing nutrient cycling rates. Therefore, mutualists, predators of mutualists and predators of pests all increased plant growth. Further, experiments that added multiple organisms from different trophic levels also increased plant growth. As a result, across the dataset, soil organisms increased plant growth 29% and non-pest soil organisms increased plant growth 46%. Omnivory has traditionally been thought to confound soil trophic dynamics, but here we suggest that omnivory allows for a simplified perspective of soil food webs – one in which most soil organisms increase plant growth by preying on pests or increasing nutrient cycling rates. An implication of this perspective is that processes that decrease soil organism abundance (e.g. soil tillage) are likely to decrease aboveground productivity.
Synthesis
Soil foodwebs have resisted generalizations due to their diversity and interconnectedness. Here we use results from a meta-analysis to inform a simplified perspective of soil foodwebs: one in which most soil trophic guilds increase plant growth. Our review also includes the first widespread support for the presence of trophic cascades in soils
Neurogenic and pericytic plasticity of conditionally immortalized cells derived from renal erythropoietin‐producing cells
In adult mammals, the kidney is the main source of circulating erythropoietin (Epo), the master regulator of erythropoiesis. In vivo data in mice demonstrated multiple subtypes of interstitial renal Epo-producing (REP) cells. To analyze the differentiation plasticity of fibroblastoid REP cells, we used a transgenic REP cell reporter mouse model to generate conditionally immortalized REP-derived (REPD) cell lines. Under nonpermissive conditions, REPD cells ceased from proliferation and acquired a stem cell-like state, with strongly enhanced hypoxia-inducible factor 2 (HIF-2α), stem cell antigen 1 (SCA-1), and CD133 expression, but also enhanced alpha-smooth muscle actin (αSMA) expression, indicating myofibroblastic signaling. These cells maintained the “on-off” nature of Epo expression observed in REP cells in vivo, whereas other HIF target genes showed a more permanent regulation. Like REP cells in vivo, REPD cells cultured in vitro generated long tunneling nanotubes (TNTs) that aligned with endothelial vascular structures, were densely packed with mitochondria and became more numerous under hypoxic conditions. Although inhibition of mitochondrial oxygen consumption blunted HIF signaling, removal of the TNTs did not affect or even enhance the expression of HIF target genes. Apart from pericytes, REPD cells readily differentiated into neuroglia but not adipogenic, chondrogenic, or osteogenic lineages, consistent with a neuronal origin of at least a subpopulation of REP cells. In summary, these results suggest an unprecedented combination of differentiation features of this unique cell type
Efficacy and safety of using auditory-motor entrainment to improve walking after stroke: a multi-site randomized controlled trial of InTandemTM
Walking slowly after stroke reduces health and quality of life. This multi-site, prospective, interventional, 2-arm randomized controlled trial (NCT04121754) evaluated the safety and efficacy of an autonomous neurorehabilitation system (InTandemTM) designed to use auditory-motor entrainment to improve post-stroke walking. 87 individuals were randomized to 5-week walking interventions with InTandem or Active Control (i.e., walking without InTandem). The primary endpoints were change in walking speed, measured by the 10-meter walk test pre-vs-post each 5-week intervention, and safety, measured as the frequency of adverse events (AEs). Clinical responder rates were also compared. The trial met its primary endpoints. InTandem was associated with a 2x larger increase in speed (Δ: 0.14 ± 0.03 m/s versus Δ: 0.06 ± 0.02 m/s, F(1,49) = 6.58, p = 0.013), 3x more responders (40% versus 13%, χ2(1) ≥ 6.47, p = 0.01), and similar safety (both groups experienced the same number of AEs). The auditory-motor intervention autonomously delivered by InTandem is safe and effective in improving walking in the chronic phase of stroke
Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep
Rapid eye movement (REM) sleep is an important component of the natural sleep/wake cycle, yet the mechanisms that regulate REM sleep remain incompletely understood. Cholinergic neurons in the mesopontine tegmentum have been implicated in REM sleep regulation, but lesions of this area have had varying effects on REM sleep. Therefore, this study aimed to clarify the role of cholinergic neurons in the pedunculopontine tegmentum (PPT) and laterodorsal tegmentum (LDT) in REM sleep generation. Selective optogenetic activation of cholinergic neurons in the PPT or LDT during non-REM (NREM) sleep increased the number of REM sleep episodes and did not change REM sleep episode duration. Activation of cholinergic neurons in the PPT or LDT during NREM sleep was sufficient to induce REM sleep.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant TR01-GM104948)National Institutes of Health (U.S.) (Grant T32-HL07901)Massachusetts General Hospital (Executive Committee on Research Fellowship)Massachusetts General Hospital. Dept. of Anesthesia, Critical Care, and Pain Medicin
Reproducible protocols for metagenomic analysis of human faecal phageomes
peer-reviewedAll sequence data used in the analyses were deposited in the Sequence read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA407341. Sample IDs, meta data and corresponding accession numbers are summarised in Additional file 2: Table S2. All raw count tables, 16S taxonomic assignments, BLAST top hits for viral contigs and R code used for the analysis are available at (https://figshare.com/s/71163558b4f78e3e7ed6).Background
Recent studies have demonstrated that the human gut is populated by complex, highly individual and stable communities of viruses, the majority of which are bacteriophages. While disease-specific alterations in the gut phageome have been observed in IBD, AIDS and acute malnutrition, the human gut phageome remains poorly characterised. One important obstacle in metagenomic studies of the human gut phageome is a high level of discrepancy between results obtained by different research groups. This is often due to the use of different protocols for enriching virus-like particles, nucleic acid purification and sequencing.
The goal of the present study is to develop a relatively simple, reproducible and cost-efficient protocol for the extraction of viral nucleic acids from human faecal samples, suitable for high-throughput studies. We also analyse the effect of certain potential confounding factors, such as storage conditions, repeated freeze-thaw cycles, and operator bias on the resultant phageome profile. Additionally, spiking of faecal samples with an exogenous phage standard was employed to quantitatively analyse phageomes following metagenomic sequencing. Comparative analysis of phageome profiles to bacteriome profiles was also performed following 16S rRNA amplicon sequencing.
Results
Faecal phageome profiles exhibit an overall greater individual specificity when compared to bacteriome profiles. The phageome and bacteriome both exhibited moderate change when stored at + 4 °C or room temperature. Phageome profiles were less impacted by multiple freeze-thaw cycles than bacteriome profiles, but there was a greater chance for operator effect in phageome processing. The successful spiking of faecal samples with exogenous bacteriophage demonstrated large variations in the total viral load between individual samples.
Conclusions
The faecal phageome sequencing protocol developed in this study provides a valuable additional view of the human gut microbiota that is complementary to 16S amplicon sequencing and/or metagenomic sequencing of total faecal DNA. The protocol was optimised for several confounding factors that are encountered while processing faecal samples, to reduce discrepancies observed within and between research groups studying the human gut phageome. Rapid storage, limited freeze-thaw cycling and spiking of faecal samples with an exogenous phage standard are recommended for optimum results
- …