9 research outputs found

    An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo

    Get PDF
    Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in . We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.Peer reviewe

    Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis

    Get PDF
    Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning

    Memory-Based Mismatch Response to Frequency Changes in Rats

    Get PDF
    Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is elicited to rare changes (‘deviants’) in a series of otherwise regularly repeating stimuli (‘standards’). Deviant stimuli are detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among a standard tone. Mismatch responses were observed at 60–100 ms after stimulus onset for frequency increases of 5% and 12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the oddball condition the response also diminished in a control condition in which no repetitive standards were presented (equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate that anesthetized rats provide a valuable model for studies of central auditory processing

    Schematic depicting the timeline of the experiment (A) and the two training protocols used (B and C).

    No full text
    <p>Rats were trained for 4 days with either trace (B) or very-long delay eyeblink conditioning (C). Local-field potentials (LFPs) from the dentate gyrus were also recorded during training. Several days after training on the first task had ceased BrdU was injected i.p. to label dividing cells. A week after the BrdU injection, rats were trained again, but now with the other task, while recording LFPs. The order of the tasks was counterbalanced. All rats were sacrificed 21 days after the BrdU injection to examine the number of surviving immature cells in the dentate gyrus. In B and C, the white bar indicates the white-noise conditioned stimulus and the grey bar indicates the stimulation to the eyelid used as an unconditioned stimulus. Representative learned responses obtained from single-trial electromyogram recordings are also presented.</p

    Learning was facilitated and predicted by previous learning of a similar task and very-long delay (VLD) conditioning was easier to learn than trace conditioning.

    No full text
    <p>In A learned responding is plotted in bins of 20 trials for the first 100 trials of each task and in bins of 100 trials from there on. The conditioned stimulus did not elicit eyeblinks before conditioning (Task 1 at 0). Learned responding increased during the initial training experience (Task 1), with elevated responding in animals trained with VLD conditioning compared to the group trained in trace conditioning. During training on the second task (Task 2), animals initially trained with the trace procedure rapidly acquired the VLD conditioned response whereas those initially trained with VLD required more trials to learn to time the conditioned response during the trace interval. Both groups learned to respond adaptively by the end of training (Task 2 at 800). B) Animals that learned well during the first task learned well during training on the second, related task. C) The highest percentage of learned responses attained during any given 100-trial block (Peak performance %) in the first phase of training (untrained) was significantly higher as a consequence of VLD than trace conditioning. When training was preceded by training on a similar task (pre-trained), the rats learned equally well both during VLD and trace conditioning. In A, statistically significant results of two-factor repeated measures ANOVAs are indicated (1.). If an interaction was detected, a separate ANOVA for each level was conducted (2.). Asterisks refer to statistical significance: * p<.05, ** p<.01, *** p<.001.</p

    Estimating stress in online meetings by remote physiological signal and behavioral features

    No full text
    Abstract Work stress impacts people’s daily lives. Their well-being can be improved if the stress is monitored and addressed in time. Attaching physiological sensors are used for such stress monitoring and analysis. Such approach is feasible only when the person is physically presented. Due to the transfer of the life from offline to online, caused by the COVID-19 pandemic, remote stress measurement is of high importance. This study investigated the feasibility of estimating participants’ stress levels based on remote physiological signal features (rPPG) and behavioral features (facial expression and motion) obtained from facial videos recorded during online video meetings. Remote physiological signal features provided higher accuracy of stress estimation (78.75%) as compared to those based on motion (70.00%) and facial expression (73.75%) features. Moreover, the fusion of behavioral and remote physiological signal features increased the accuracy of stress estimation up to 82.50%

    The relative amplitude of hippocampal theta activity predicted learning the first task and increased in response to the conditioned stimulus early in learning the first task.

    No full text
    <p>A) Twenty-two animals had correctly placed electrodes in the dentate gyrus. One electrode per animal was selected for analysis based on the location of the electrode tip. B) Representative examples of single-trial local-field potential (LFP) recordings from the dentate gyrus during the presentation of the conditioning stimuli. The white bar indicates the white-noise conditioned stimulus and the grey bar indicates the stimulation of the eyelid used as an unconditioned stimulus. C) Fast Fourier transform of spontaneous hippocampal LFPs illustrates a peak in power at the theta band (3–12 Hz). D) The relative power of spontaneous hippocampal Type 2 theta activity recorded prior to any training predicted learning the first task. E) The presentation of the conditioned stimulus induced a response within the theta-band early in training on the first task. In E, statistically significant results of two-factor repeated measures ANOVAs are indicated (1.). If an interaction was detected, a separate ANOVA for each level was conducted (2.). Asterisks refer to statistical significance: * p<.05, ** p<.01, *** p<.001.</p

    An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo

    No full text
    Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal–hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.National Institutes of HealthMinisterio de Economía y CompetitividadAcademy of FinlandEuropean Molecular Biology OrganizationHuman Frontiers Science ProgramDepto. de FisiologíaFac. de MedicinaTRUEpu
    corecore