99 research outputs found

    Molecular cloning of haploid germ cell-specific tektin cDNA and analysis of the protein in mouse testis

    Get PDF
    AbstractTektins are a class of proteins that form filamentous polymers in the walls of ciliary and flagellar microtubules. We report here the molecular cloning of a new member of the tektin family, tektin-t, identified from a mouse haploid germ cell-specific cDNA library. Tektin-t mRNA encodes a protein of 430 deduced amino acids possessing RSNVELCRD, the conserved sequence of tektin family proteins. Western blotting showed a single band having a molecular weight of 86 kDa in the mouse testis. Immunohistochemistry of the testis showed that tektin-t is localized in the flagella of elongating spermatids from developmental step 15 to maturity

    RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing

    Get PDF
    © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).The highly intronic nature of protein coding genes in mammals necessitates a co-transcriptional splicing mechanism as revealed by mNET-seq analysis. Immunoprecipitation of MNase-digested chromatin with antibodies against RNA polymerase II (Pol II) shows that active spliceosomes (both snRNA and proteins) are complexed to Pol II S5P CTD during elongation and co-transcriptional splicing. Notably, elongating Pol II-spliceosome complexes form strong interactions with nascent transcripts, resulting in footprints of approximately 60 nucleotides. Also, splicing intermediates formed by cleavage at the 5' splice site are associated with nearly all spliced exons. These spliceosome-bound intermediates are frequently ligated to upstream exons, implying a sequential, constitutive, and U12-dependent splicing process. Finally, lack of detectable spliced products connected to the Pol II active site in human HeLa or murine lymphoid cells suggests that splicing does not occur immediately following 3' splice site synthesis. Our results imply that most mammalian splicing requires exon definition for completion.This work was supported by funding to N.J.P. (Wellcome Trust Investigator Award [107928/Z/15/Z] and ERC Advanced [339270] grants) and to M.C.-F. (Fundação Ciência e Tecnologia, Portugal; grant PTDC/BEX-BCM/5899/2014).info:eu-repo/semantics/publishedVersio

    Case Report: Unresectable pulmonary metastases of a giant cell tumor of bone treated with denosumab: a case report and review of literature

    Get PDF
    Giant cell tumors of bone (GCTB) sometimes metastasize to distant organs. In this case report, we present pulmonary metastases of GCTB mimicking malignancies. A 49-year-old man underwent two surgical treatments for a GCTB of the right proximal radius. At the time of the second surgery, no lesions were observed on chest radiography. Three years after surgery, the patient presented with cough and dyspnea, and chest radiography and computed tomography (CT) revealed multiple lung nodules. Positron emission tomography/CT revealed a high accumulation of 18F-fluoro-2-deoxy-D-glucose (18F-FDG) in multiple lesions. Based on the rapid growth and accumulation of 18F-FDG, a metastatic malignant tumor was suspected. CT-guided needle biopsy was performed, and the histology showed proliferation of spindle cells and multinuclear giant cells without malignant changes. Denosumab was administered because multiple lung lesions were unresectable. One month after denosumab treatment, CT showed marked shrinkage of the lesions, and the symptoms significantly improved. Eighteen months after the initial treatment with denosumab, the patient had no symptoms or tumor growth. Although its long-term efficacy and safety remain unclear, denosumab may be a treatment option for patients with unresectable pulmonary GCTB

    Mammalian NET-Seq reveals genome-wide nascent transcription coupled to RNA processing

    Get PDF
    © Copyright © 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Transcription is a highly dynamic process. Consequently, we have developed native elongating transcript sequencing technology for mammalian chromatin (mNET-seq), which generates single-nucleotide resolution, nascent transcription profiles. Nascent RNA was detected in the active site of RNA polymerase II (Pol II) along with associated RNA processing intermediates. In particular, we detected 5'splice site cleavage by the spliceosome, showing that cleaved upstream exon transcripts are associated with Pol II CTD phosphorylated on the serine 5 position (S5P), which is accumulated over downstream exons. Also, depletion of termination factors substantially reduces Pol II pausing at gene ends, leading to termination defects. Notably, termination factors play an additional promoter role by restricting non-productive RNA synthesis in a Pol II CTD S2P-specific manner. Our results suggest that CTD phosphorylation patterns established for yeast transcription are significantly different in mammals. Taken together, mNET-seq provides dynamic and detailed snapshots of the complex events underlying transcription in mammals.This work was supported by funding to N.J.P. (Wellcome Trust Programme [091805/Z/10/Z] and ERC Advanced [339270] Grants) and to M.C.-F. (Fundação Ciência e Tecnologia, Portugal).info:eu-repo/semantics/publishedVersio

    Light- and Electron- microscopic and Immunohistochemical Studies of Human Rhabdomyosarcomas. Comparisons Among Primary Tumors, Heterotransplants in Nude Mice, and Cultured Cells from 13 Patients

    Get PDF
    Eighteen human rhabdomyosarcomas (RMS) were transplanted into the sub-cutaneous space on the back of nude mice. Thirteen of the tumors gave rise to transplantable tumors that were further examined morphologically and immuno-histochemically. The morphology of the transplanted tumors was similar to that of the primary tumors. Immunohistochemically, five primary tumors and six transplanted tumors were reacted with both desmin and myoglobin. However, in eleven cases cultured cells derived from the transplanted tumors, which showed elongated to strap-spindle-shaped cytoplasm resembling myotubules, reacted more intensely with both myoglobin and desmin. On ultrastructural examination, six primary tumors and seven transplanted tumors were found to have myofilaments or Z-bands. However, cultured cells showed myofilaments or Z-bands in their cytoplasm in all cases examined. We concluded that, on xeno-grafting, the histologic characteristics of the primary tumor are essentially con-served, and that tumor cells under culture conditions undergo an increased differentiation of skeletal muscle. These human RMS strains in nude mice and in cell lines will provide an excellent model system for investigating the biology of RMS and for further study of the molecular events underlying the genesis of this tumor

    Deregulated Expression of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence.

    Get PDF
    Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression

    Examination of Selective Low-pressure Fine Needle Aspiration Cytology Under Ultrasound Guidance

    Get PDF
    Cytology by fine-needle cytology is indispensable for diagnosing head and neck tumor, especially for thyroid nodule. There are two methods of fine needle cytology; one of fine-needle aspiration cytology (FNAC and another of fine-needle non-aspiration cytology (FNNAC). These previous procedures has each disadvantage such as the mixing of blood or low yield of cells. We proposed a new technique: selective low-pressure fine needle aspiration cytology (SLOP-FNAC) to overcome the backwards of previous procedures. We used the scoring system by Mair et al. to evaluate smear quality of specimens obtained with FNNAC and SLOP-FNAC. SLOP-FNAC smears exhibited higher scores in amount of cellular material, degree of cellular degeneration and cell yield, and retention of appropriate architecture compared to FNNAC smears. The SLOP-FNAC smears scored significantly higher for amount of cellular material and retention of appropriate architecture evaluated (P = 0.0261 and P = 0.0024, Student’s t-test). SLOP-FNAC may be a useful cell sampling technique that reduces blood contamination while securing a high cell yield with maintaining tissue structure

    A diagnostic marker for superficial urothelial bladder carcinoma : lack of nuclear ATBF1 (ZFHX3) by immunohistochemistry suggests malignant progression

    Get PDF
    Background: Pathological stage and grade have limited ability to predict the outcomes of superficial urothelial bladder carcinoma at initial transurethral resection (TUR). AT-motif binding factor 1 (ATBF1) is a tumor suppressive transcription factor that is normally localized to the nucleus but has been detected in the cytoplasm in several cancers. Here, we examined the diagnostic value of the intracellular localization of ATBF1 as a marker for the identification of high risk urothelial bladder carcinoma. Methods: Seven anti-ATBF1 antibodies were generated to cover the entire ATBF1 sequence. Four human influenza hemagglutinin-derived amino acid sequence-tagged expression vectors with truncated ATBF1 cDNA were constructed to map the functional domains of nuclear localization signals (NLSs) with the consensus sequence KR[X10-12]K. A total of 117 samples from initial TUR of human bladder carcinomas were analyzed. None of the patients had received chemotherapy or radiotherapy before pathological evaluation. Results: ATBF1 nuclear localization was regulated synergistically by three NLSs on ATBF1. The cytoplasmic fragments of ATBF1 lacked NLSs. Patients were divided into two groups according to positive nuclear staining of ATBF1, and significant differences in overall survival (P = 0.021) and intravesical recurrence-free survival (P = 0.013) were detected between ATBF1+ (n= 110) and ATBF1− (n=7) cases. Multivariate analysis revealed that ATBF1 staining was an independent prognostic factor for intravesical recurrence-free survival after adjusting for cellular grading and pathological staging (P = 0.008). Conclusions: Cleavage of ATBF1 leads to the cytoplasmic localization of ATBF1 fragments and downregulates nuclear ATBF1. Alterations in the subcellular localization of ATBF1 due to fragmentation of the protein are related to the malignant character of urothelial carcinoma. Pathological evaluation using anti-ATBF1 antibodies enabled the identification of highly malignant cases that had been overlooked at initial TUR. Nuclear localization of ATBF1 indicates better prognosis of urothelial carcinoma

    Distinctive Patterns of Transcription and RNA Processing for Human lincRNAs

    Get PDF
    Numerous long intervening noncoding RNAs (lincRNAs) are generated from the mammalian genome by RNA polymerase II (Pol II) transcription. Although multiple functions have been ascribed to lincRNAs, their synthesis and turnover remain poorly characterized. Here, we define systematic differences in transcription and RNA processing between protein-coding and lincRNA genes in human HeLa cells. This is based on a range of nascent transcriptomic approaches applied to different nuclear fractions, including mammalian native elongating transcript sequencing (mNET-seq). Notably, mNET-seq patterns specific for different Pol II CTD phosphorylation states reveal weak co-transcriptional splicing and poly(A) signal-independent Pol II termination of lincRNAs as compared to pre-mRNAs. In addition, lincRNAs are mostly restricted to chromatin, since they are rapidly degraded by the RNA exosome. We also show that a lincRNA-specific co-transcriptional RNA cleavage mechanism acts to induce premature termination. In effect, functional lincRNAs must escape from this targeted nuclear surveillance process
    corecore