64 research outputs found

    Prediction of protein motions from amino acid sequence and its application to protein-protein interaction

    Get PDF
    BACKGROUND: Structural flexibility is an important characteristic of proteins because it is often associated with their function. The movement of a polypeptide segment in a protein can be broken down into two types of motions: internal and external ones. The former is deformation of the segment itself, but the latter involves only rotational and translational motions as a rigid body. Normal Model Analysis (NMA) can derive these two motions, but its application remains limited because it necessitates the gathering of complete structural information. RESULTS: In this work, we present a novel method for predicting two kinds of protein motions in ordered structures. The prediction uses only information from the amino acid sequence. We prepared a dataset of the internal and external motions of segments in many proteins by application of NMA. Subsequently, we analyzed the relation between thermal motion assessed from X-ray crystallographic B-factor and internal/external motions calculated by NMA. Results show that attributes of amino acids related to the internal motion have different features from those related to the B-factors, although those related to the external motion are correlated strongly with the B-factors. Next, we developed a method to predict internal and external motions from amino acid sequences based on the Random Forest algorithm. The proposed method uses information associated with adjacent amino acid residues and secondary structures predicted from the amino acid sequence. The proposed method exhibited moderate correlation between predicted internal and external motions with those calculated by NMA. It has the highest prediction accuracy compared to a naïve model and three published predictors. CONCLUSIONS: Finally, we applied the proposed method predicting the internal motion to a set of 20 proteins that undergo large conformational change upon protein-protein interaction. Results show significant overlaps between the predicted high internal motion regions and the observed conformational change regions

    Predicting mostly disordered proteins by using structure-unknown protein data

    Get PDF
    BACKGROUND: Predicting intrinsically disordered proteins is important in structural biology because they are thought to carry out various cellular functions even though they have no stable three-dimensional structure. We know the structures of far more ordered proteins than disordered proteins. The structural distribution of proteins in nature can therefore be inferred to differ from that of proteins whose structures have been determined experimentally. We know many more protein sequences than we do protein structures, and many of the known sequences can be expected to be those of disordered proteins. Thus it would be efficient to use the information of structure-unknown proteins in order to avoid training data sparseness. We propose a novel method for predicting which proteins are mostly disordered by using spectral graph transducer and training with a huge amount of structure-unknown sequences as well as structure-known sequences. RESULTS: When the proposed method was evaluated on data that included 82 disordered proteins and 526 ordered proteins, its sensitivity was 0.723 and its specificity was 0.977. It resulted in a Matthews correlation coefficient 0.202 points higher than that obtained using FoldIndex, 0.221 points higher than that obtained using the method based on plotting hydrophobicity against the number of contacts and 0.07 points higher than that obtained using support vector machines (SVMs). To examine robustness against training data sparseness, we investigated the correlation between two results obtained when the method was trained on different datasets and tested on the same dataset. The correlation coefficient for the proposed method is 0.14 higher than that for the method using SVMs. When the proposed SGT-based method was compared with four per-residue predictors (VL3, GlobPlot, DISOPRED2 and IUPred (long)), its sensitivity was 0.834 for disordered proteins, which is 0.052–0.523 higher than that of the per-residue predictors, and its specificity was 0.991 for ordered proteins, which is 0.036–0.153 higher than that of the per-residue predictors. The proposed method was also evaluated on data that included 417 partially disordered proteins. It predicted the frequency of disordered proteins to be 1.95% for the proteins with 5%–10% disordered sequences, 1.46% for the proteins with 10%–20% disordered sequences and 16.57% for proteins with 20%–40% disordered sequences. CONCLUSION: The proposed method, which utilizes the information of structure-unknown data, predicts disordered proteins more accurately than other methods and is less affected by training data sparseness

    SAHG, a comprehensive database of predicted structures of all human proteins

    Get PDF
    Most proteins from higher organisms are known to be multi-domain proteins and contain substantial numbers of intrinsically disordered (ID) regions. To analyse such protein sequences, those from human for instance, we developed a special protein-structure-prediction pipeline and accumulated the products in the Structure Atlas of Human Genome (SAHG) database at http://bird.cbrc.jp/sahg. With the pipeline, human proteins were examined by local alignment methods (BLAST, PSI-BLAST and Smith–Waterman profile–profile alignment), global–local alignment methods (FORTE) and prediction tools for ID regions (POODLE-S) and homology modeling (MODELLER). Conformational changes of protein models upon ligand-binding were predicted by simultaneous modeling using templates of apo and holo forms. When there were no suitable templates for holo forms and the apo models were accurate, we prepared holo models using prediction methods for ligand-binding (eF-seek) and conformational change (the elastic network model and the linear response theory). Models are displayed as animated images. As of July 2010, SAHG contains 42 581 protein-domain models in approximately 24 900 unique human protein sequences from the RefSeq database. Annotation of models with functional information and links to other databases such as EzCatDB, InterPro or HPRD are also provided to facilitate understanding the protein structure-function relationships

    Variants of C-C Motif Chemokine 22 (CCL22) Are Associated with Susceptibility to Atopic Dermatitis: Case-Control Studies

    Get PDF
    Atopic dermatitis (AD) is a common inflammatory skin disease caused by multiple genetic and environmental factors. AD is characterized by the local infiltration of T helper type 2 (Th2) cells. Recent clinical studies have shown important roles of the Th2 chemokines, CCL22 and CCL17 in the pathogenesis of AD. To investigate whether polymorphisms of the CCL22 gene affect the susceptibility to AD, we conducted association studies and functional studies of the related variants. We first resequenced the CCL22 gene and found a total of 39 SNPs. We selected seven tag SNPs in the CCL22 gene, and conducted association studies using two independent Japanese populations (1st population, 916 cases and 1,032 controls; 2nd population 1,034 cases and 1,004 controls). After the association results were combined by inverse variance method, we observed a significant association at rs4359426 (meta-analysis, combined P = 9.6×10−6; OR, 0.74; 95% CI, 0.65–0.85). Functional analysis revealed that the risk allele of rs4359426 contributed to higher expression levels of CCL22 mRNA. We further examined the allelic differences in the binding of nuclear proteins by electrophoretic mobility shift assay. The signal intensity of the DNA-protein complex derived from the G allele of rs223821, which was in absolute LD with rs4359426, was higher than that from the A allele. Although further functional analyses are needed, it is likely that related variants play a role in susceptibility to AD in a gain-of-function manner. Our findings provide a new insight into the etiology and pathogenesis of AD

    The DBCLS BioHackathon: standardization and interoperability for bioinformatics web services and workflows. The DBCLS BioHackathon Consortium*

    Get PDF
    Web services have become a key technology for bioinformatics, since life science databases are globally decentralized and the exponential increase in the amount of available data demands for efficient systems without the need to transfer entire databases for every step of an analysis. However, various incompatibilities among database resources and analysis services make it difficult to connect and integrate these into interoperable workflows. To resolve this situation, we invited domain specialists from web service providers, client software developers, Open Bio* projects, the BioMoby project and researchers of emerging areas where a standard exchange data format is not well established, for an intensive collaboration entitled the BioHackathon 2008. The meeting was hosted by the Database Center for Life Science (DBCLS) and Computational Biology Research Center (CBRC) and was held in Tokyo from February 11th to 15th, 2008. In this report we highlight the work accomplished and the common issues arisen from this event, including the standardization of data exchange formats and services in the emerging fields of glycoinformatics, biological interaction networks, text mining, and phyloinformatics. In addition, common shared object development based on BioSQL, as well as technical challenges in large data management, asynchronous services, and security are discussed. Consequently, we improved interoperability of web services in several fields, however, further cooperation among major database centers and continued collaborative efforts between service providers and software developers are still necessary for an effective advance in bioinformatics web service technologies

    Pdb-reprdb: a database of representative protein chains from the protein data bank (pdb

    No full text
    PDB-REPRDB is a database of representative protein chains from the Protein Data Bank (PDB). Started at the Real World Computing Partnership (RWCP) in August 1997, it developed to the present system of PDB-REPRDB. In April 2001, the system was move
    corecore