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Abstract

Background: Molecular recognition features (MoRFs) are short binding regions located in longer intrinsically
disordered protein regions. Although these short regions lack a stable structure in the natural state, they readily
undergo disorder-to-order transitions upon binding to their partner molecules. MoRFs play critical roles in the
molecular interaction network of a cell, and are associated with many human genetic diseases. Therefore,
identification of MoRFs is an important step in understanding functional aspects of these proteins and in finding
applications in drug design.

Results: Here, we propose a novel method for identifying MoRFs, named as MFSPSSMpred (Masked, Filtered and
Smoothed Position-Specific Scoring Matrix-based Predictor). Firstly, a masking method is used to calculate the
average local conservation scores of residues within a masking-window length in the position-specific scoring
matrix (PSSM). Then, the scores below the average are filtered out. Finally, a smoothing method is used to
incorporate the features of flanking regions for each residue to prepare the feature sets for prediction. Our method
employs no predicted results from other classifiers as input, i.e., all features used in this method are extracted from
the PSSM of sequence only. Experimental results show that, comparing with other methods tested on the same
datasets, our method achieves the best performance: achieving 0.004~0.079 higher AUC than other methods when
tested on TEST419, and achieving 0.045~0.212 higher AUC than other methods when tested on TEST2012.
In addition, when tested on an independent membrane proteins-related dataset, MFSPSSMpred significantly
outperformed the existing predictor MoRFpred.

Conclusions: This study suggests that: 1) amino acid composition and physicochemical properties in the flanking
regions of MoRFs are very different from those in the general non-MoRF regions; 2) MoRFs contain both highly
conserved residues and highly variable residues and, on the whole, are highly locally conserved; and 3) combining
contextual information with local conservation information of residues facilitates the prediction of MoRFs.
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Background
With the breaking of the conventional protein paradigm
of “sequence-structure-function”, the functional impor-
tance of intrinsically disordered proteins (IDPs) has be-
come increasingly apparent. Although IDPs have no
well-defined tertiary structures in their natural state,
they possess essential biological functions. IDPs play
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critical roles in a variety of physiological processes such
as signal transduction, translation regulation, and pro-
tein modification. Specifically, in interaction-mediated
signaling events, IDPs possess unique advantages [1]: (a)
they lack a stable three-dimensional structure and their
conformations can fluctuate over time to time; (b) they
possess a combination of high specificity and low af-
finity; (c) they can recognize multiple partners through
adoption of different conformations; (d) multiple dis-
tinct partners can bind to a common binding site of
IDPs, where these partners may assume different folds.
Many proteins from higher organism have been found
d. This is an open access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:fangchun@yama.info.waseda.ac.jp
http://creativecommons.org/licenses/by/2.0


Fang et al. BMC Bioinformatics 2013, 14:300 Page 2 of 14
http://www.biomedcentral.com/1471-2105/14/300
to be entirely disordered or to contain partly disordered
regions [2]. Due to the particular properties of IDPs,
conventional structure determination methods are sim-
ply inapplicable to IDPs in isolation, because no stable
structure exists. However, when bound to their molecu-
lar partners, many IDPs undergo a disorder-to-order
transition [1-3]. This characteristic makes it possible to
obtain the structures of IDPs by crystallizing them in
complexes with their molecular binding partners.
Molecular recognition features (MoRFs) are short bin-

ding regions (5–25 residues) located in IDPs regions,
which easily undergo disorder-to-order transitions upon
binding to partner proteins [4]. According to their struc-
tures in the bound state, MoRFs can be divided into at
least three sub-types: α-MoRFs, β-MoRFs, and ι-MoRFs,
which form α-helices, β-strands, and structures without a
regular pattern of backbone hydrogen bonds [2]. MoRFs
are enrichment in highly connected hub proteins, and
their complexity reinforces the functional importance of
the disordered regions [3]. They act as molecular switches
in molecular-interaction networks of the cell, and are as-
sumed to be implicated in the causes of many diseases [1].
Thus, identification of MoRFs is a key step in understan-
ding the functions of these proteins and in finding
applications in drug design.
Experimental methods for identifying MoRFs are expen-

sive and time consuming, which makes computational
methods indispensable for guiding experimental analysis.
So far, because of the limited number of experimentally
validated MoRFs, only four custom-built tools for pre-
dicting MoRFs are available: α-MoRF-PredI [5] and
α-MoRF-PredII [6] are neural network-based predictors
aimed at predicting α-MoRFs; ANCHOR [7] concentrates
on the prediction of MoRFs which bind to globular pro-
teins; and MoRFpred [4] is a comprehensive predictor
which combines the annotations generated by sequence
alignments with the prediction results generated by a sup-
port vector machine (SVM). These predictors use a variety
of predicted features as their input, including predicted
disorder probabilities [4-7], predicted solvent accessibility
[4], predicted secondary structure propensities [4,5], and
predicted B-factors [4]. These predicted features not only
easy to result in high-dimensional feature space, but also
greatly increase the complexity of algorithms. Moreover,
the performance of these predictors is also largely affected
by other classifiers. Thus, a more simple and efficient
method for identifying MoRFs is indispensable.
A number of studies have analyzed the attributes of

MoRFs [1-9]. Norman et al. [3] found that several strong
physicochemical preferences were shown in all MoRF
types compared with in general disordered regions.
Fuxreiter et al. [8] identified that amino acid composition
and charge/hydropathy properties of MoRFs exhibited a
mixture characteristic of folded and disordered structures.
Chica et al. [9] found that the flanking regions of MoRFs
were relevant to linear motif-mediated interactions at both
the structural and sequence levels, and that the prediction
of MoRFs can be facilitated by contextual information
from the protein sequence.
Because the functional sites of proteins need to maintain

a high degree of conservation to execute a given function,
evolutionary information included in a position-specific
scoring matrix (PSSM) has been considered as the most
predictive feature for identifying the functional sites of
ordered proteins. MoRFs are also found to be more con-
served than their surrounding residues [9,10]. However,
disordered proteins usually evolve more rapidly than
ordered proteins; therefore, standard PSSMs which in-
corporate the conservation information of proteins are in-
effective when used directly. Fortunately, relative local
conservation has been proven to be a good feature for
motif discovery, and has been used in a number of studies
[10-12]. In addition, Shimizu et al. [13] found that igno-
ring some redundant features in standard PSSMs can
improve the prediction of protein disordered regions
significantly.
Taking the above information into account, we deve-

loped a novel sequence-based method for identifying
MoRFs in IDPs. In this method, firstly, a masking method
is used to calculate the average local conservative scores.
Then, a filtering method is used to drop the scores below
the average. Finally, a smoothing method is used to in-
corporate features of the flanking regions for each residue
in the PSSM. The masking and filtering steps strengthen
the highly conserved information and filter out poorly
conserved information for each residue, thereby ensuring
that only highly local conserved features are considered in
the prediction. Moreover, the smoothing method can in-
corporate contextual information of neighboring residues
for any given residue. All the related features are extracted
only from protein sequences themselves. We used a
support vector machine (SVM) to build the classifier.

Methods
Benchmark datasets
In the present study, one training dataset and three test
datasets were adopted. We employed the same training
dataset as the one that was used by Fatemeh et al. [4] in
their study of MoRFpred. This dataset, called as
TRAINING421, includes 421 MoRF-containing chains,
that contained 5,396 positive samples (MoRF residues)
and 240,588 negative samples (non-MoRF residues). All
the positive samples and an equal number of randomly
selected negative samples were used for training our
prediction model. After that, three test datasets were
used for testing the developed model.
First, the two test dataset used in the study of MoRFpred

[4] were adopted.
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TEST419
It included 419 MoRF-containing chains, which were
deposited in PDB from April 2008, named as TEST419.
They shared up to 30% sequence identity with the
training dataset.

TEST2012
It included 45 MoRF-containing chains, which were de-
posited in PDB from January 1 to March 11, 2012 and in
UniProtKB from February 22, 2012, named as TEST2012.
They shared up to 30% sequence identity with the training
dataset.
The training and the above two test datasets are avail-

able on the MoRFpred web server [http://biomine-ws.
ece.ualberta.ca/MoRFpred/index.html] [4].
Because the TRAINING421 and TEST419 datasets

were reported to contain a large number of immune
response-related MoRFs (120 among the 840 MoRFs),
we built another independent dataset to test whether the
developed predictor was biased for some particular type
of MoRFs.

TESTMem64
It included 64 non-redundant MoRF-containing mem-
brane proteins (50 transmembrane proteins and 14
peripheral membrane proteins), which were extracted
from the study of membrane proteins reported by
Ioly et al. [14]. In their study, Ioly et al. collected 166
non-redundant MoRF-containing membrane protein
sequences. We removed the sequences that either with
sequence length >1000 residues, or with MoRF length >25
residues. Because sequences longer than 1000 residues
cannot be processed by MoRFpred [4], in our study, we
also aimed to predict short MoRFs (5–25 residues).
Figure 1 Distribution of the amino acids in three regions: MoRF regio
regions (red).
After that, 64 sequences were retained, named as
TESTMem64. Details of the TESTMem64 dataset are
shown in Additional file 1: Table S1.

Feature analysis of MoRFs, their flanking regions, and
general non-MoRF regions
Composition analysis
The composition of the 421 protein sequences related to
TRAINING421dataset was analyzed. The sequences were
characterized into three regions: MoRF region, regions
flanking the MoRFs, and general non-MoRF regions.
When the length of the flanking region was 5-residue

long, amino acid composition of the three regions is
shown in Figure 1. The composition of the MoRFs and
their flanking regions deviated significantly from that of
the general non- MoRF regions. The MoRFs were
enriched in hydrophobic residues Ile, Leu, Phe, Tyr and
Lys, as well as in charged residues Arg, and Asp, while
depleted in Ala and Gly. The flanking regions were
enriched in variable (disorder-promoting) amino acids,
such as Ala, Gly, Glu, Ser and Thr, and depleted in
hydrophobic and rigid (order-promoting) residues. Both
of MoRFs and the flanking regions exhibit a large excess
of a small, polar residue--Serine. The general non-
MoRF regions are overrepresented with Val, Cys, Ala,
Gly, Asn, and Ser, most of which were small and tiny
amino acids.
We further analyzed the composition of flanking regions

with different lengths. While the composition distribution
of general non-MoRF regions was essentially unchanged
over different lengths (see the Additional file 2: Figure S1),
that of the flanking regions changed significantly (see the
Additional file 3: Figure S2). The composition differences
between the flanking regions and the general non-MoRF
ns (blue), 5-residue long flanking regions (green), and non-MoRF

http://biomine-ws.ece.ualberta.ca/MoRFpred/index.html
http://biomine-ws.ece.ualberta.ca/MoRFpred/index.html


Fang et al. BMC Bioinformatics 2013, 14:300 Page 4 of 14
http://www.biomedcentral.com/1471-2105/14/300
regions (% amino acids in flanking regions - % amino acids
in general non-MoRF regions) are shown in Figure 2. We
also calculated the Pearson product–moment correlation
coefficients between the flanking length and the compos-
ition difference for each amino acid (Additional file 4:
Table S2). The correlation coefficients related to Ile, Leu,
Val, His, Arg, Glu and flanking regions Ser have absolute
value > 0.75 at the p-value <0.001. It illustrates that,
composition of these amino acids in the flanking regions
and in the general non-MoRF regions are significantly
different.

Physicochemical properties
We next analyzed differences between flanking and ge-
neral non-MoRF regions with respect to ten physicochem-
ical properties, namely: hydrophobic, polar, small, proline,
tiny, aliphatic, aromatic, positive, negative and charged.
The difference of physicochemical propensity between the
flanking regions and general non-MoRF regions (property
percentage in flanking regions - property percentage in
general non-MoRF regions) is shown in Figure 3. The cor-
responding Pearson correlation coefficients between the
flanking length and each physicochemical properties dif-
ference are shown in Additional file 5: Table S3. Corre-
lation coefficients related to hydrophobic, polar, aliphatic,
aromatic, positive, negative and charged have absolute
value > 0.75 at the p-value <0.001. This phenomenon
illustrates that, physicochemical properties of flanking re-
gions are very different from those of general non-MoRF
regions, namely that, the arrangements and properties of
neighboring residues significantly impact the plasticity of
MoRFs [8].
Figure 2 Differences in amino acid composition between MoRF flanki
regions; for example, W5 indicates a 5-residue long MoRF flanking region.
The analyses of the composition and physicochemical
properties for the three regions illustrated that flanking
regions are highly relevant to the MoRFs. Therefore, we
assumed that the MoRFs in protein sequences are highly
contextual. Because MoRFs are found to be more con-
served than surrounding residues [9,10], we considered
incorporating contextual information of residues with
local evolutionary conservation to improve the predic-
tion of MoRFs.

Evolutionary information from PSSM
Evolutionary information was obtained from PSSMs,
which were generated by PSI-BLAST [15], searching
against the NCBI non-redundant (nr) database [16] by
three-time iteration with an e-value of 0.001. Evolution-
ary information for each amino acid was encapsulated in
a vector of 20 dimensions, where the size of PSSM
matrix of a protein with N residues is 20 × N. 20 dimen-
sions were considered as a standard amino acid size, and
N is the length of the protein sequence.

Masking and filtering the PSSM
Masked PSSM was used to describe the relative local
evolutionary information of each residue in a protein.
It was converted from a standard PSSM according to
Formula (1).

Masking Ci ¼ Ci−
1

2nþ 1

Xiþn

i−n

Cj; i ¼ 1;…;N ;whereNis thesequence lengthð Þ;

ð1Þ
where Masking_Ci represents the relative local conser-
vation score of residue i, Ci is the standard conservation
ng and non-MoRF regions. W indicates the length of the flanking



Figure 3 Differences in physicochemical properties between MoRF flanking and non-MoRF regions. W indicates the length of the flanking
regions; for example, W5 indicates a 5-residue long MoRF flanking region.
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score in the PSSM, and 2n+1 is the masking-window
size.
In order to extract highly locally conserved information

and filter out poorly locally conserved information from a
sequence, the masked PSSM was further converted to a
filtered PSSM according to Formula (2). All the scores
below the mean score within a masking-window length
were set to 0.

Filtering Ci ¼
Masking Ci; Masking Ci > 0ð Þ
0; MaskingCi

≤0
� �(

;

i ¼ 1;…;N ;whereN is thesequence lengthð Þ
ð2Þ

An example of a masked and filtered PSSM profile is
shown in Figure 4. For amino acid 'A', the first column
of the vector was masked by 4 − [(−1) + (−1) + 4 + (−1) +
(−2)]/5 = 4.2, because 4.2 > 0, it was retained, otherwise,
it would be set to 0. After modification, only the scores
that represented strong local conservation were retained.

Smoothing the modified PSSM
Every value in a standard PSSM is calculated based on
the assumption that the position of each value in the
matrix is independent of the others. However, residues
in MoRF regions appear continuously and the plasticity
of MoRFs is also largely affected by neighboring residues
[8]. Accordingly, in order to incorporate the dependency
on surrounding neighbors of a central residue, we
adopted a smoothing method [17] that was inspired by
the smoothing skill used in image processing [18].
Firstly, to address the N-terminal and C-terminal of a
protein sequence, m (m is an odd number) ZERO vec-
tors were appended to the head and tail of a standard
PSSM profile, where 2m+1 was the size of a smoothing
sliding-window. The smoothing sliding-window was
then used to incorporate the evolutionary information
from the upstream and downstream residues. Each row
vector of an amino acid residue Ci was smoothed
according to Formula (3). Finally, each value in the
masked and smoothed PSSM matrix was scaled to a
range of [−1, 1] according to a certain ratio.

Smoothing Ci ¼
Xiþm

i−m

Filtering Cj;

i ¼ 1;…;N ;N is the sequence length; 2mþ 1 is smoothing−windowsizeð Þ
ð3Þ

Prediction model
We adopt a modified PSSM, which incorporates the in-
formation of amino acid position, relative evolutionary
information, and dependency on neighboring residues,
to design our prediction model. Only highly conserved
position scores calculated from PSSMs were considered
in our prediction. Firstly, a masking method was used to
calculate the average score of the local conservation
within a masking-window length. Next, scores lower
than the averages were filtered out. This procedure
could strengthen the highly locally conserved informa-
tion and filter out poorly locally conserved information
of residues. Finally, a smoothing method was adopted to



Figure 4 Procedure of preparing feature sets for the predictor.
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incorporate feature information from the neighbors
flanking each residue. The prediction model is shown in
Figure 5, and the detailed procedure for preparing the
input feature set is shown in Figure 4.
SVM
Prediction of MoRFs can be addressed as a two-
classification problem, namely, determining whether a
given residue belongs to a MoRFs or not. Our prediction



Figure 5 Prediction model design. 2h+1 is the length of the outside sliding-window, n is the sequence length, and vi represents the
corresponding amino acids i in the feature vector.
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model was trained using the LIBSVM software package
[19,20]. Here, the Radial Basis Function (RBF kernel) was
selected as the kernel function. The capacity parameter c
and kernel width parameter g were then optimized using a
grid search approach [19,20].

Evaluation criteria
We adopted the evaluation criteria used in the 10th
Critical Assessment of Techniques for Protein Structure
Prediction (CASP10) experiment [21]. The area under
ROC curve (AUC) and the accuracy (ACC) were adopted
to evaluate the performance of the classifiers. Receiver
operating characteristic (ROC) plots with AUC values
were generated using the R statistical package [22]. The
sensitivity, specificity, true positive rate (TPR), false nega-
tive rate (FPR), success rate, and ACC were defined as
follows:

Specifity ¼ TN
TN þ FP

ð4Þ

TPR ¼ Sensitivity ¼ TP
TP þ FN

ð5Þ
FPR ¼ 1−Specificity ¼ FP
TN þ FP

ð6Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð7Þ

ACC ¼ 1
2

Sensitivityþ Specificityð Þ ð8Þ

Where TP, TN, FP and FN represents true positive, true
negative, false positive and false negative respectively.

Results and discussion
Optimizing window size
To develop the MFSPSSMpred model, three window
sizes were necessary: (i) the outside sliding-window size
which ultimately determined the dimensions of feature
vectors; (ii) the masking-window size which was used to
calculate the average conservation scores in a local re-
gion; and (iii) the inside smoothing-window size which
was used to strengthen locally conserved features. To
make a fair comparison among the different predictors,
we chose the same outside-sliding window size of ‘25’
with the research MoRFpred [4]. The masking-window
size was also assigned to ‘25’, since it has the similar



Figure 6 Cross-validation accuracy of MFSPSSMpred with
different smoothing-window sizes. W indicates the length of
windows, i.e., W3 means 3-residue long.
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meaning with the outside sliding-window size, both of
which indicated the flanking length that would be consid-
ered to affect a central residue. Here, because the average
scores calculated from different lengths greater than 10
residues were highly similar, we found that variations in
masking-window size had limited influence on the results
(Results of MFSPSSMpred with different masking-window
sizes are shown in Additional file 6: Figure S3). Next,
MFSPSSMpred models with different smoothing-window
sizes were tested by 5-cross-validation using the grid
search approach [19]. The cross-validation accuracies
according to different smoothing-window sizes are shown
Figure 7 Distribution of the conservation scores for protein 1HV2 (PD
and smoothed PSSM (c). The red-dotted rectangles mark the position of
in Figure 6. The predictor performance stabilized with the
smoothing-window sizes greater than 9. Therefore, we
chose the relatively best size 13 as the inside smoothing-
window size for our model.

Effectiveness of the feature extracting methods
Effectiveness at the individual protein level
To confirm the effectiveness of our feature extracting
method in distinguishing MoRF residues from non_MoRF
residues and to determine how this might benefit the
predication, we selected the yeast elongin C complex with
a von Hippel-Lindau peptide [PDB: 1HV2] as an example.
Yeast elongin C is a signaling protein, which is highly
intrinsically disordered and has a MoRF located at the
region of residues 100–212 of its B chain.
We extracted a column of position-specific scores

randomly from the standard PSSM (there are a total of
20 columns, corresponding to the 20 standard amino
acids). Then, the distribution of the scores in the standard
PSSM, masked PSSM, and smoothed PSSM, was counted
(Figure 7), in the standard PSSM, the distribution of
scores between the MoRF and non_MoRF showed no
distinct difference. The MoRFs regions included both
highly conserved residues and highly variable residues,
which is consistent with the property of MoRFs. i.e., to
maintain a certain function, MoRFs must be highly con-
served. On the other hand, MoRFs must be highly variable
because of their intrinsically disordered nature. In the
B ID) related to the standard PSSM (a), masked PSSM (b), masked
MoRF (only residues 100~212 in the B chain are displayed).
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masked PSSM, scores below the average have been filtered
out, thereby discarding the noise data (low conservative
scores), that are undesirable for prediction. In the
smoothed PSSM, scores of residues that are surrounded
by highly conserved residues have been enhanced after
smoothing, and scores of residues that are surrounded by
poorly conserved residues have been weakened. Since
MoRFs are usually composed of intensively conserved res-
idues, they are easy to appear as highly conserved peaks
compared with the non_MoRF regions. The results dem-
onstrate that, after masking and smoothing the PSSM, the
position-specific scores in MoRF regions become signifi-
cantly higher than those in the non_MoRF regions. Here,
we have shown the results for just one column of scores
in the PSSM, similar results were obtained for the scores
in the other 19 columns of the PSSM (data not shown).

Effectiveness at the whole dataset level
We also calculated the distributions of local conserva-
tion scores in each of the three PSSMs for all residues in
the 840 chains (TRAINING421 and TEST419). We as-
sumed that the summation of scores in each row of the
corresponding PSSMs represented the local conservation
Figure 8 Distribution of the summation scores of residues in MoRF an
PSSM (b), masked and smoothed PSSM(c). Here the non-MoRF regions
of the related residues. The local conservation scores in
each PSSM were calculated according to Formulas (9),
(10) and (11).

Sum Original Ci ¼
X20
j¼1

Original Cj;

i ¼ 1;…;N ;N is the sequence lengthð Þ
ð9Þ

Sum Masked Ci ¼
X20
j¼1

Masked Cj;

i ¼ 1;…;N ; N is the sequence lengthð Þ
ð10Þ

Sum Smoothed Ci ¼
X20
j¼1

Smoothed Cj;

i ¼ 1;…;N ;N is the sequence lengthð Þ
ð11Þ

where ‘20’ is the number of standard amino acid resi-
dues, and also the number of columns in the PSSMs
d non-MoRF regions related to the standard PSSM (a), masked
include the residues in the flanking regions.



Figure 9 ROC plots of MFSPSSMpred tested on TEST419 (a) and TEST2012 (b).
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(PSSM is a 20 × N matrix), and N is the sequence
length.
We compared the distribution of the amino acid resi-

dues in the MoRF and non_MoRF regions in each of the
three PSSMs. In the standard PSSM, the MoRF residues
are at a disadvantage in conservation compared with the
non_MoRF residues (Figure 8a), because MoRFs contain
highly variable residues. After masking and filtering, the
differences between the residues in the MoRF and
non_MoRF regions became less obvious, and some
MoRF residues exhibited more strongly conserved than
the non_MoRF residues (Figure 8b), showing that most
of the filtered scores belonged to the non_MoRF resi-
dues. Finally, after smoothing, the residues in the two
regions had distinctly different distributions; the MoRF
residues were much more strongly conserved than most
of non_MoRF residues (Figure 8c). The findings ob-
tained using the whole of the TRAINING421 and
TEST419 datasets show that our feature extracting
method can effectively distinguish MoRF residues from
non_MoRF residues as illustrated in Figure 8.
Table 1 Performance comparison with four other
PSSM-based methods

Test dataset Methods ACC TPR FPR AUC

TEST419 PSSM 0.610 0.542 0.322 0.655

Smooth_PSSM 0.620 0.503 0.264 0.644

Mask_PSSM 0.609 0.492 0.273 0.648

MFSPSSMpred 0.636 0.491 0.219 0.677

MFS_Physi_PSSM 0.604 0.503 0.294 0.639

All methods used the same outside sliding-window size of 25. Smooth_PSSM
and Mask_PSSM adopted the same smoothing or masking-window size
with MFSPSSMpred.
Performance tested on TEST419, TEST2012 and
comparison with other feature-based methods
First, TRAINING421 was used to train MSPSSMpred,
which was then tested on the TEST419 and TEST2012
datasets. ROC plots of the results are shown in Figure 9
(a ~b) respectively. For TEST419, the AUC was 0.677
and, for TEST2012, the AUC was 0.724.
Originally, the direct outputs of PSSMs from PSI-

BLAST have provided conversation information by default
and have been widely used to predict various protein func-
tional sites. However, there is a room for improvement,
because standard PSSMs contain redundant features.
Here, we have compared our method with four other

PSSM_based methods: 1) the ‘PSSM’ method, which
Figure 10 ROC plots for MFSPSSMpred and four other
PSSM-based methods.



Table 2 Performance comparisons tested on the TEST419
and TEST2012 datasets

Test dataset predictor ACC TPR FPR AUC

TEST419 MFSPSSMPred 0.636 0.491 0.219 0.677

MoRFpred [4] 0.603 0.254 0.049 0.673

α-MoRF-predI [5] 0.543 0.123 0.037 NA*

α-MoRF-predII [6] 0.580 0.258 0.098 NA*

ANCHOR [7] 0.568 0.389 0.253 0.600

MD [23] 0.550 0.485 0.386 0.598

TEST2012 MFSPSSMPred 0.702 0.575 0.172 0.724

MoRFpred [4] 0.596 0.236 0.045 0.697

MD [23] 0.589 0.613 0.436 0.679

ANCHOR [7] 0.599 0.433 0.236 0.638

IUPpredS [24] 0.581 0.449 0.287 0.634

IUPpredL [24] 0.595 0.572 0.382 0.62

MFDp [25] 0.598 0.752 0.556 0.62

Spine-D [26] 0.599 0.72 0.522 0.605

DISOPRED2 [27] 0.544 0.543 0.455 0.548

DISOclust [28] 0.530 0.653 0.593 0.512

* Because the α-MoRF-predI and α-MoRF-predII generate only binary
predictions, their AUC cannot be computed.
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uses the standard PSSM (the direct output of PSSMs) for
prediction; 2) the ‘Smooth_PSSM’ method, which uses
smoothed PSSMs without masking and filtering; 3) the
‘Mask_PSSM’ method, which uses masked and filtered
PSSMs without smoothing; and 4) the ‘MFS_Physi_PSSM’
method, which is similar to our MFSPSSMpred method
but incorporates 10 physicochemical properties of resi-
dues as input. The performances of MFSPSSMpred and
the other four methods based on TRAINING421 and
TEST419 are shown in Table 1, and ROC plots for all the
methods are shown in Figure 10. The results demonstrate
that MFSPSSMpred achieves the best performance.
Figure 11 ROC and ACC for all the predictors tested on TEST419 (a) a
and α-MoRF-predII because they generate only binary predictions.
Performance comparison with existing predictors
Some existing tools that are publicly available for MoRFs
prediction have been tested on the TEST419 and
TEST2012 datasets [4]. Here, we list them out for a
comparison. Results are shown in Table 2, and the re-
sults of other classifiers are quoted from the study of
Fatemeh et al. [4]. Details of ROC and ACC for all the
predictors are shown in Figure 11. The results demon-
strate that, MFSPSSMpred outperformed the other pre-
dictors with respect to ACC and AUC on both the
TEST419 and TEST2012 datasets.

Performance on unbalanced training samples
The TRAINING421 dataset contains 5,601positive sam-
ples and 262,732 negative samples, and the ratio bet-
ween them is 1:46.9. In order to analyze whether this
imbalance biased the prediction method, we developed
another training model with a 1:2 ratio between the
MoRF and non-MoRF residues, that is, 5,601 MoRFs
with 112,02 non-MoRF residues, and tested it on the
TEST419 and TEST2012 datasets (Figure 12(a ~b)). Our
results demonstrate that there was no significant diffe-
rence in the performance between the 2:1 and 1:1 ratios.

Performance tested on TESTMem64 and comparison with
MoRFpred
The TRAINING421 and TEST419 datasets contain a
large proportion (120 among the 840 MoRFs) of im-
mune response-related MoRFs [4]. In order to test
whether MFSPSSMpred was biased for some parti-
cular type of MoRFs, we built an independent test
dataset --TESTMem64, which was extracted from another
independent study of membrane proteins by Ioly et al.
[14]. MoRFpred [4] was also tested on TESTMem64 for a
comparison. Results are shown in Figure 13 and a detailed
comparison of ACC, TPR, FPR and AUC is shown in
nd TEST2012 (b). The AUC cannot be computed for α-MoRF-predI



Figure 12 Performance of MFSPSSMpred on different ratios of training samples, tested on TEST419 (a) and TEST2012 (b). Red plots
represent the result based on a training dataset with 1:2 ratio of MoRFs to non_MoRFs; the black plots represent the result based on a training
dataset with 1:1 ratio of MoRFs to non_MoRFs.
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Table 3. MFSPSSMpred performed much better than
MoRFpred, achieving significantly higher ACC and AUC
than MoRFpred.
We speculate that the reasons for the better perfor-

mance of MFSPSSMpred include: (1) the MoRFpred
method incorporated many predicted results, such as
predicted disorder probabilities, predicted B-factor and
predicted relative solvent accessibility derived from other
Figure 13 ROC plots of MFSPSSMpred (black) and MoRFpred
(red) tested on TESTMem64.
predictors, as input for the prediction. These predicted
features themselves are largely affected by the other classi-
fiers those were used. Moreover, incorporating many pre-
dicted features can easy to result in a high-dimensional
feature space; (2) MoRFpred [4] merges the result gene-
rated by an SVM and the result generated by sequence
alignment with the MoRFs database into their final predic-
tion result. Since there are so many immune response-
related MoRFs in their database, MoRFpred is inevitably
biased towards this type of MoRFs; (3) MFSPSSMpred
used only the PSSM as input for prediction. It caught the
point that, MoRF regions in a sequence are mingled with
highly conserved residues and highly variable residues.
Therefore, our approach is independent of the type or
binding partners of MoRFs, and can be applied to the
prediction of all MoRFs.

Conclusions
In this study, we propose a novel method which adopts
a modified PSSM encoding scheme for MoRFs pre-
diction. Our method employs no predicted results as in-
put, and all input features are extracted only from the
PSSMs of sequences. By means of masking, filtering and
Table 3 Performance comparison between MFSPSSMPred
and MoRFpred tested on TESTMem64

Test dataset Method ACC TPR FPR AUC

TESTMemMoRFs MFSPSSMpred 0.722 0.627 0.185 0.758

MoRFpred 0.638 0.389 0.114 0.674
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smoothing, the modified PSSMs combine predictive
features, which can effectively distinguish MoRF from
non_MoRF residues. When comparing with other
existing methods on the same datasets, MFSPSSMpred
outperformed them all, achieving 3.3%~9.3% higher
ACC and 0.004~0.079 higher AUC than other methods
when tested on TEST419, and 10.3%~17.2% higher
ACC and 0.045~0.212 higher AUC than other methods
when tested on TEST2012. Moreover, despite the training
dataset being biased toward immune response-related
proteins, when MFSPSSMpred was tested on an indepen-
dent membrane proteins-related dataset-–TESTMem64, it
showed good adaptability and significantly outperformed
the existing MoRFpred predictor [4].
In summary, this study shows that combining con-

textual information with local conservation information
of residues is predictive for identifying MoRFs. In
addition, our study revealed some hallmarks of MoRFs;
namely, MoRFs are mingled with highly conserved resi-
dues and highly variable residues, and MoRFs, on the
whole, are highly locally conserved and are flanked by
less conserved residues. A free Web server has been de-
veloped, which allows users to identify MoRFs in a given
sequence using the model trained on our dataset. It is
available from URL http://webapp.yama.info.waseda.ac.
jp/fang/MoRFs.php.
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