14 research outputs found

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose.This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations.This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity;• be informed about the levels of natural radioactivity caused by different sources;• have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor;• and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.Additional information at: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiatio

    Evaluating the Regulation of Alerting Systems to Facilitate the Evacuation of the Deaf in Australia

    Get PDF
    The current building regulations in Australia may be in need of review to provide effective alerting systems for emergency egress of the deaf in buildings. Through research, interviews, and focus groups, we reviewed the Australian building regulations, determined that they are in need of change regarding alerting systems and egress for the deaf, and formulated recommendations on procedures to change them. Our project sponsor, the Victorian Deaf Society, and other organisations can use these recommendations to generate justified cases for presentation to various Australian building regulatory appeals boards

    Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form

    No full text
    In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing

    Abrupt and persistent shutdown of the thermohaline forcing during MIS5e in the Adriatic Sea: Insights from shallow-water sapropel sediments

    No full text
    During the Quaternary, the Eastern Mediterranean Sea (EMS) experienced cyclical events of stagnation driven by natural climate variability. The resulting deoxygenation left well-preserved evidence in the sedimentary record as organic carbon-rich deposits referred to as sapropels. Although drastic modifications in the degree of dense-water formation over the EMS shelves exerted first-order control on the deoxygenation, most of the focus has been traditionally placed on the deep EMS. To provide a shallow-water perspective, here we investigated the sapropel S5 in the Adriatic shelf (borehole PRAD1-2) deposited during MIS5e (129-116 ka). This archive is strategically located in a region where the Northern Adriatic Dense Water (NAdDW) interacts with the seabed before cascading across the continental slope. We used Zr/Rb and MgO/Al2O3 to assess bottom current energy and north-to-south sediment transport dynamics, both regulated by the changes in NAdDW production intensity. In addition, we used stable isotopes (δ13C and δ18O) of foraminifera, redox sensitive elements (U, Mo and Sb), foraminifera assemblages as well as alkenones to reconstruct the paleo-environmental conditions during the S5 formation.Our study provides an unprecedented reconstruction of the physical forcing controlling the deoxygenation during the S5 formation. Results reveal that the shutdown of the NAdDW occurred in a few centuries (0.67 ± 0.22 kyrs), when freshening of surface waters combined with warming of winter temperatures mutually hampered the dense water formation. A few centuries after the NAdDW shutdown, the Adriatic shelf experienced euxinic waters for about 2 kyrs followed by a progressive reoxygenation that lasted 4 kyrs. We explain this second phase as a general recovery driven by increased surface salinity over the EMS combined with winter cooling. This favoured surface water mixing without, however, producing dense water in the Northern Adriatic and thus collectively the interruption of the dense water production lasted for 6 kyrs since the onset of MIS5e. Overall, our finding highlights that the thermohaline forcing responded to climate change much quicker than inferred by earlier studies that suggested instead a millennial-scale prelude necessary to develop stagnation. In addition, our results provide solid evidence about the large-scale impact of the deoxygenation during S5 that is capable of invading the continental shelf. Comparison with the latest regional models illustrates how none of the future simulations covering different climate change scenarios reproduces an event over the EMS margins comparable with what described in this study

    Coastal permafrost was massively eroded during the Bølling-Allerød warm period

    Get PDF
    AbstractThe Bølling-Allerød interstadial (14,700–12,900 years before present), during the last deglaciation, was characterized by rapid warming and sea level rise. Yet, the response of the Arctic terrestrial cryosphere during this abrupt climate change remains thus far elusive. Here we present a multi-proxy analysis of a sediment record from the northern Svalbard continental margin, an area strongly influenced by sea ice export from the Arctic, to elucidate sea level - permafrost erosion connections. We show that permafrost-derived material rich in biospheric carbon became the dominant source of sediments at the onset of the Bølling-Allerød, despite the lack of direct connections with permafrost deposits. Our results suggest that the abrupt temperature and sea level rise triggered massive erosion of coastal ice-rich Yedoma permafrost, possibly from Siberian and Alaskan coasts, followed by long-range sea ice transport towards the Fram Strait and the Arctic Ocean gateway. Overall, we show how coastal permafrost is susceptible to large-scale remobilization in a scenario of rapid climate variability.</jats:p

    Resolving sea ice dynamics in the north-western Ross Sea during the last 2.6 ka: From seasonal to millennial timescales

    No full text
    Time-series analyses of satellite images reveal that sea ice extent in the Ross Sea has experienced significant changes over the last 40 years, likely triggered by large-scale atmospheric anomalies. However, resolving how sea ice in the Ross Sea has changed over longer timeframes has until now remained more elusive. Here we used a laminated sediment piston core (14.6 m) collected from the Edisto inlet (Western Ross Sea) to reconstruct fast ice dynamics over the last 2.6 ka. Our goal was to first understand the climate expression of selected well-defined sediment laminae and then use these characteristics for reconstructing past sea ice behaviour across the whole sedimentary sequence. We used the recently established sea ice diatom biomarker proxy IPSO25 in combination with diatom census counts and bulk analyses. Analyses performed on a suite of discrete laminae revealed statistically significant differences between dark and light laminae reflecting different depositional conditions. Based on their respective biogeochemical fingerprints, we infer that dark laminae accumulated during sea ice thaws in early summer. Under these conditions, laminae contain relatively high concentrations of IPSO25 and display an enriched δ13C composition for the bulk organic matter (OM). While diatom assemblages in dark laminae are relatively homogenous, as the thaw continues later in the summer, Corethron pennatum becomes the dominant diatom species, resulting in the formation of light laminae characterized by low IPSO25 concentrations. Since C. pennatum can migrate vertically through the water column to uptake nutrients and avoid competition in oligotrophic waters, its high concentration likely reflects stratified and ice-free surface waters typical of late summer. Down-core trends show that the correlation between sediment brightness and geochemical fingerprint (i.e., IPSO25 and δ13C) holds throughout the record. Based on the knowledge gained at lamina level, our down-core high-resolution reconstruction shows that the summer fast ice coverage changed dramatically during the late Holocene. Specifically, we conclude that the Edisto inlet experienced regular early summer opening between 2.6 ka, and ca. 0.7 ka, after which, coastal fast ice persisted during summer months and ice-free conditions became less frequent. Comparison with previous regional ice core data suggests that the sudden cooling recorded over the Victoria Land Coast region since 0.7 ka might potentially explain our observation of persistent summer fast ice in the Western Ross Sea. Our study has shown that multi-proxy data derived from laminated sediments can provide hitherto unknown detail regarding past summer sea ice dynamics in coastal Antarctic regions

    Surface interactome in Streptococcus pyogenes.

    No full text
    Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis
    corecore