13 research outputs found

    European Atlas of Natural Radiation

    Get PDF
    Natural ionizing radiation is considered as the largest contributor to the collective effective dose received by the world population. The human population is continuously exposed to ionizing radiation from several natural sources that can be classified into two broad categories: high-energy cosmic rays incident on the Earth’s atmosphere and releasing secondary radiation (cosmic contribution); and radioactive nuclides generated during the formation of the Earth and still present in the Earth’s crust (terrestrial contribution). Terrestrial radioactivity is mostly produced by the uranium and thorium radioactive families together with potassium. In most circumstances, radon, a noble gas produced in the radioactive decay of uranium, is the most important contributor to the total dose.This Atlas aims to present the current state of knowledge of natural radioactivity, by giving general background information, and describing its various sources. This reference material is complemented by a collection of maps of Europe displaying the levels of natural radioactivity caused by different sources. It is a compilation of contributions and reviews received from more than 80 experts in their field: they come from universities, research centres, national and European authorities and international organizations.This Atlas provides reference material and makes harmonized datasets available to the scientific community and national competent authorities. In parallel, this Atlas may serve as a tool for the public to: • familiarize itself with natural radioactivity;• be informed about the levels of natural radioactivity caused by different sources;• have a more balanced view of the annual dose received by the world population, to which natural radioactivity is the largest contributor;• and make direct comparisons between doses from natural sources of ionizing radiation and those from man-made (artificial) ones, hence to better understand the latter.Additional information at: https://remon.jrc.ec.europa.eu/About/Atlas-of-Natural-Radiatio

    Evaluating the Regulation of Alerting Systems to Facilitate the Evacuation of the Deaf in Australia

    Get PDF
    The current building regulations in Australia may be in need of review to provide effective alerting systems for emergency egress of the deaf in buildings. Through research, interviews, and focus groups, we reviewed the Australian building regulations, determined that they are in need of change regarding alerting systems and egress for the deaf, and formulated recommendations on procedures to change them. Our project sponsor, the Victorian Deaf Society, and other organisations can use these recommendations to generate justified cases for presentation to various Australian building regulatory appeals boards

    Bayesian Feature Fusion Using Factor Graph in Reduced Normal Form

    No full text
    In this work, we investigate an Information Fusion architecture based on a Factor Graph in Reduced Normal Form. This paradigm permits to describe the fusion in a completely probabilistic framework and the information related to the different features are represented as messages that flow in a probabilistic network. In this way we build a sort of context for observed features conferring to the solution a great flexibility for managing different type of features with wrong and missing values as required by many real applications. Moreover, modifying opportunely the messages that flow into the network, we obtain an effective way to condition the inference based on the different reliability of each information source or in presence of single unreliable signal. The proposed architecture has been used to fuse different detectors for an identity document classification task but its flexibility, extendibility and robustness make it suitable to many real scenarios where the signal can be wrongly received or completely missing

    Coastal permafrost was massively eroded during the Bølling-Allerød warm period

    Get PDF
    AbstractThe Bølling-Allerød interstadial (14,700–12,900 years before present), during the last deglaciation, was characterized by rapid warming and sea level rise. Yet, the response of the Arctic terrestrial cryosphere during this abrupt climate change remains thus far elusive. Here we present a multi-proxy analysis of a sediment record from the northern Svalbard continental margin, an area strongly influenced by sea ice export from the Arctic, to elucidate sea level - permafrost erosion connections. We show that permafrost-derived material rich in biospheric carbon became the dominant source of sediments at the onset of the Bølling-Allerød, despite the lack of direct connections with permafrost deposits. Our results suggest that the abrupt temperature and sea level rise triggered massive erosion of coastal ice-rich Yedoma permafrost, possibly from Siberian and Alaskan coasts, followed by long-range sea ice transport towards the Fram Strait and the Arctic Ocean gateway. Overall, we show how coastal permafrost is susceptible to large-scale remobilization in a scenario of rapid climate variability.</jats:p

    Resolving sea ice dynamics in the north-western Ross Sea during the last 2.6 ka: From seasonal to millennial timescales

    No full text
    Time-series analyses of satellite images reveal that sea ice extent in the Ross Sea has experienced significant changes over the last 40 years, likely triggered by large-scale atmospheric anomalies. However, resolving how sea ice in the Ross Sea has changed over longer timeframes has until now remained more elusive. Here we used a laminated sediment piston core (14.6 m) collected from the Edisto inlet (Western Ross Sea) to reconstruct fast ice dynamics over the last 2.6 ka. Our goal was to first understand the climate expression of selected well-defined sediment laminae and then use these characteristics for reconstructing past sea ice behaviour across the whole sedimentary sequence. We used the recently established sea ice diatom biomarker proxy IPSO25 in combination with diatom census counts and bulk analyses. Analyses performed on a suite of discrete laminae revealed statistically significant differences between dark and light laminae reflecting different depositional conditions. Based on their respective biogeochemical fingerprints, we infer that dark laminae accumulated during sea ice thaws in early summer. Under these conditions, laminae contain relatively high concentrations of IPSO25 and display an enriched δ13C composition for the bulk organic matter (OM). While diatom assemblages in dark laminae are relatively homogenous, as the thaw continues later in the summer, Corethron pennatum becomes the dominant diatom species, resulting in the formation of light laminae characterized by low IPSO25 concentrations. Since C. pennatum can migrate vertically through the water column to uptake nutrients and avoid competition in oligotrophic waters, its high concentration likely reflects stratified and ice-free surface waters typical of late summer. Down-core trends show that the correlation between sediment brightness and geochemical fingerprint (i.e., IPSO25 and δ13C) holds throughout the record. Based on the knowledge gained at lamina level, our down-core high-resolution reconstruction shows that the summer fast ice coverage changed dramatically during the late Holocene. Specifically, we conclude that the Edisto inlet experienced regular early summer opening between 2.6 ka, and ca. 0.7 ka, after which, coastal fast ice persisted during summer months and ice-free conditions became less frequent. Comparison with previous regional ice core data suggests that the sudden cooling recorded over the Victoria Land Coast region since 0.7 ka might potentially explain our observation of persistent summer fast ice in the Western Ross Sea. Our study has shown that multi-proxy data derived from laminated sediments can provide hitherto unknown detail regarding past summer sea ice dynamics in coastal Antarctic regions

    Surface interactome in Streptococcus pyogenes.

    No full text
    Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis

    Identification of new autoantigens by protein array indicates a role for IL4 neutralization in autoimmune hepatitis

    Get PDF
    Autoimmune hepatitis (AIH) is an unresolving inflammation of the liver of unknown cause. Diagnosis requires the exclusion of other conditions and the presence of characteristic features such as specific autoantibodies. Presently, these autoantibodies have relatively low sensitivity and specificity and are identified via immunostaining of cells or tissues; therefore, there is a diagnostic need for better and easy-to-assess markers. To identify new AIH-specific autoantigens, we developed a protein microarray comprising 1626 human recombinant proteins, selected in silico for being secreted or membrane associated. We screened sera from AIH patients on this microarray and compared the reactivity with that of sera from healthy donors and patients with chronic viral hepatitis C. We identified six human proteins that are specifically recognized by AIH sera. Serum reactivity to a combination of four of these autoantigens allows identification of AIH patients with high sensitivity (82%) and specificity (92%). Of the six autoantigens, the interleukin-4 (IL4) receptor fibronectin type III domain of the IL4 receptor (CD124), which is expressed on the surface of both lymphocytes and hepatocytes, showed the highest individual sensitivity and specificity for AIH. Remarkably, patients' sera inhibited STAT6 phosphorylation induced by IL4 binding to CD124, demonstrating that these autoantibodies are functional and suggesting that IL4 neutralization has a pathogenetic role in AIH
    corecore