34 research outputs found

    Molecular Pathological Classification of Colorectal Cancer

    Get PDF
    Colorectal cancer (CRC) shows variable underlying molecular changes with two major mechanisms of genetic instability: chromosomal instability and microsatellite instability. This review aims to delineate the different pathways of colorectal carcinogenesis and provide an overview of the most recent advances in molecular pathological classification systems for colorectal cancer. Two molecular pathological classification systems for CRC have recently been proposed. Integrated molecular analysis by The Cancer Genome Atlas project is based on a wide-ranging genomic and transcriptomic characterisation study of CRC using array-based and sequencing technologies. This approach classified CRC into two major groups consistent with previous classification systems: (1) ∼16 % hypermutated cancers with either microsatellite instability (MSI) due to defective mismatch repair (∼13 %) or ultramutated cancers with DNA polymerase epsilon proofreading mutations (∼3 %); and (2) ∼84 % non-hypermutated, microsatellite stable (MSS) cancers with a high frequency of DNA somatic copy number alterations, which showed common mutations in APC, TP53, KRAS, SMAD4, and PIK3CA. The recent Consensus Molecular Subtypes (CMS) Consortium analysing CRC expression profiling data from multiple studies described four CMS groups: almost all hypermutated MSI cancers fell into the first category CMS1 (MSI-immune, 14 %) with the remaining MSS cancers subcategorised into three groups of CMS2 (canonical, 37 %), CMS3 (metabolic, 13 %) and CMS4 (mesenchymal, 23 %), with a residual unclassified group (mixed features, 13 %). Although further research is required to validate these two systems, they may be useful for clinical trial designs and future post-surgical adjuvant treatment decisions, particularly for tumours with aggressive features or predicted responsiveness to immune checkpoint blockade

    A shift from distal to proximal neoplasia in the colon: a decade of polyps and CRC in Italy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the last years a trend towards proximalization of colorectal carcinomas (CRC) has been reported. This study aims to evaluate the distribution of CRC and adenomatous polyps (ADP) to establish the presence of proximalization and to assess the potential predictors.</p> <p>Methods</p> <p>We retrieved histology reports of colonic specimens excised during colonoscopy, considering the exams performed between 1997 and 2006 at Cuneo Hospital, Italy. We compared the proportion of proximal lesions in the period 1997-2001 and in the period 2002-2006.</p> <p>Results</p> <p>Neoplastic lesions were detected in 3087 people. Proximal CRC moved from 25.9% (1997-2001) to 30.0% (2002-2006). Adjusting for sex and age, the difference was not significant (OR 1.23; 95% CI: 0,95-1,58). The proximal ADP proportion increased from 19.2% (1997-2001) to 26.0% (2002-2006) (OR: 1.43; 95% CI: 1.17-1.89). The corresponding figures for advanced proximal ADP were 6.6% and 9.5% (OR: 1.48; 95% CI: 1.02-2.17). Adjusting for gender, age, diagnostic period, symptoms and number of polyps the prevalence of proximal advanced ADP was increased among people ≥ 70 years compared to those aged 55-69 years (OR 1.49; 95% CI: 1.032.16). The main predictor of proximal advanced neoplasia was the number of polyps detected per exam (> 1 polyp versus 1 polyp: considering all ADP: OR 2.16; 95% CI: 1.59-2.93; considering advanced ADP OR 1.63; 95% CI: 1.08-2.46). Adjusting for these factors, the difference between the two periods was no longer significant.</p> <p>Conclusions</p> <p>CRC do not proximalize while a trend towards a proximal shift in adenomas was observed among people ≥ 70 years.</p

    The growth pattern of transplanted normal and nodular hepatocytes

    Get PDF
    Overt neoplasia is often the end result of a long biological process beginning with the appearance of focal lesions of altered tissue morphology. While the putative clonal nature of focal lesions has often been emphasized, increasing attention is being devoted to the possible role of an altered growth pattern in the evolution of carcinogenesis. Here we compare the growth patterns of normal and nodular hepatocytes in a transplantation system that allows their selective clonal proliferation in vivo. Rats were pre-treated with retrorsine, which blocks the growth of resident hepatocytes, and were then transplanted with hepatocytes isolated from either normal liver or hepatocyte nodules. Both cell types were able to proliferate extensively in the recipient liver, as expected. However, their growth pattern was remarkably different. Clusters of normal hepatocytes integrated in the host liver, displaying a normal histology; however, transplanted nodular hepatocytes formed new hepatocyte nodules, with altered morphology and sharp demarcation from surrounding host liver. Both the expression and distribution of proteins involved in cell polarity, cell communication, and cell adhesion, including connexin 32, E-cadherin, and matrix metalloproteinase-2, were altered in clusters of nodular hepatocytes. Furthermore, we were able to show that down-regulation of connexin 32 and E-cadherin in nodular hepatocyte clusters was independent of growth rate. These results support the concept that a dominant pathway towards neoplastic disease in several organs involves defect(s) in tissue pattern formation

    Annex to Quirke et al. Quality assurance in pathology in colorectal cancer screening and diagnosis: annotations of colorectal lesions

    Get PDF
    Multidisciplinary, evidence-based European Guidelines for quality assurance in colorectal cancer screening and diagnosis have recently been developed by experts in a pan-European project coordinated by the International Agency for Research on Cancer. The full guideline document includes a chapter on pathology with pan-European recommendations which take into account the diversity and heterogeneity of health care systems across the EU. The present paper is based on the annex to the pathology chapter which attempts to describe in greater depth some of the issues raised in the chapter in greater depth, particularly details of special interest to pathologists. It is presented here to make the relevant discussion known to a wider scientific audience

    Human papillomavirus detected in female breast carcinomas in Japan

    Get PDF
    To investigate the aetiological role of human papillomavirus (HPV) in breast cancer, we examined the presence, genotype, viral load, and physical status of HPV in 124 Japanese female patients with breast carcinoma. Human papillomavirus presence was examined by PCR using SPF10 primers, and primer sets targeting the E6 region of HPV-16, -18, and -33. The INNO-LiPA HPV genotyping kit was used to determine genotype. Human papillomavirus DNA was detected in 26 (21%) breast carcinomas. The most frequently detected HPV genotype was HPV-16 (92%), followed by HPV-6 (46%), HPV-18 (12%), and HPV-33 (4%). In 11 normal epithelium specimens adjacent to 11 HPV-16-positive carcinomas, 7 were HPV-16-positive. However, none of the normal breast tissue specimens adjacent to HPV-negative breast carcinomas were HPV-positive. The real-time PCR analysis suggested the presence of integrated form of viral DNA in all HPV-16-positive samples, and estimated viral load was low with a geometric mean of 5.4 copies per 104 cells. In conclusion, although HPV DNA was detected in 26 (21%) breast carcinomas and, in all HPV-16-positive cases, the HPV genome was considered integrated into the host genome, their low viral loads suggest it is unlikely that integrated HPV is aetiologically involved in the development of Japanese breast carcinomas that we examined
    corecore